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ABSTRACT 

 

The study intends to apply some of the most common and appropriate 

detections and remedies methods to meet the assumptions of a multiple linear 

regression model. When the assumptions are violated, then the inferences about the 

parameter estimate will be incorrect. The secondary data for maize (1998-2018), 

wheat (1998-2018), rice (1966-2018) and sesame (1989-2018) of Myanmar. Maize 

data for linearity assumption is used to detect and remedy. Wheat data for normality 

assumption is used to apply in the detection and remedial ways. Rice data for 

homoscedasticity assumption is used and sesame data for micronumerosity 

assumption, multicollinearity assumption, and the nature of independent variables 

assumption, autocorrelation assumption are used to diagnosis and resolving ways.   
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CHAPTER I 

INTRODUCTION 

1.1 Rationale of the Study 

Regression model is one of the most tools and methods in the process of 

statistical analysis. It is concerned with describing and evaluating the relationship 

between a variable called the dependent variable and one or more other known 

variables are called independent variables. Although the regression problem may be 

solved by the number of techniques, the most-used method is Ordinary Least Squares 

(OLS). The regression model has a good predictive ability by estimating the 

coefficient using OLS method. According to the Gauss-Markov Theorem, the OLS 

estimator provides the Best Linear Unbiased Estimator (BLUE). 

All parametric tests in a statistical analysis assume some certain assumptions 

about the data. The classical multiple regression model has several assumptions. 

When one of these assumptions is violated, the classical tests such as t and F are no 

longer appropriate. A violation of any of these assumptions changes the conclusion of 

the research and interpretation of the results. Therefore all research must check and 

adhere to these assumptions for accurate interpretation and model integrity. The 

classical multiple regression model is based on several simplifying assumptions, 

which are as follows. 

The first one of the assumption of linear regression analysis is the relationship 

between dependent variable and independent variables to be linear in the parameters. 

If linearity is violated, the results of the regression analysis will under- or over- 

estimate the true relationship and increase the risk of Type I and Type II errors 

(Osborne & Waters, 2002). Violation of this assumption threatens the meaning of the 

parameters estimated in the analysis (Keith, 2006).  

In the second assumption, the values of the independent variables, the X’s are 

fixed, or X values are independent of the error term, that is, the covariance between 

the disturbance terms and each independent variable must be zero. Violation this 

assumption biases the coefficient estimate. When an independent variable correlates 

with the error term, OLS incorrectly attributes some of the variance that the error term 

actually explains to the independent variable instead. 



The third assumption is that for given independent variables (X’s), the mean 

value of the disturbance terms must be zero. If this assumption is not fulfilled, the 

original intercept cannot be estimated. 

The forth assumption is that any disturbances have the same variance. That is, 

there is homoscedasticity or no heteroscedasticity. If the error term of an equation is 

known to be heteroscedastic, there are three major consequences: Even if the error 

term of an equation is known to be purely heteroskedastic, that heteroscedasticity will 

not cause bias in the OLS estimates of the coefficient, heteroscedasticity increases the 

variances of the  ̂ coefficient and heteroskedasticity causes OLS to tend to 

underestimate the variance and standard error of the coefficients. 

The fifth assumption is that any two errors are independent of each other. This 

assumption can be broken when data are collected on the same variables over time. 

This is known as autocorrelation. If the disturbances are auto-correlated, the 

regression coefficients remain unbiased and consistent, but are not efficient and 

regression model is less reliable. 

The sixth assumption is that the number of observations n must be greater than 

the number of parameters to be estimated. Although the best linear unbiased estimator 

(BLUE), the OLS estimators have large variances and covariances, making precise 

estimation difficult. The t-ratio of one or more coefficients tends to be statistically 

insignificant. Although the t ratio of one or more coefficients is statistically 

insignificant, R
2
, the overall measure of goodness of fit can be very high. The OLS 

estimators and their standard errors can be sensitive to small changes in the data. 

In the seventh assumption, the independent variables X values in a given 

sample must not all be the same, that is, the variables must vary. If all the X values 

are identical, then     ̅ and the denominator of that equation will be zero, making it 

impossible to estimate β2 and β1. The variance of independent variable must be a 

positive number. If there is very little variation in the independent variables, much of 

the variation in dependent variable can be explain. Furthermore, there can be no 

outliers in X values. When there is outliers in the values of X variables, this 

observation influence its own prediction and its means and inflate the standard error 

with which it is being standardized. 

The eighth assumption is that any independent variables are not correlated 

with each other. Multicollinearity occurs when the independent variables are too 



highly correlated with each other. Multicollinearity is a phenomenon in with one 

independent variable in a multiple regression model can be linearly predicted from the 

other. In this situation, the estimates of linear regression coefficient may change in 

response to small changes in the model or the data. Multicollinearlity does not reduce 

the predictive power or reliability of the model as a whole, at least within the sample 

data set.  

The ninth assumption is that the model is correctly specified, so there is no 

specification bias. The usual confidence interval and hypothesis testing procedures are 

likely to give misleading conclusions about the statistical significance of the estimated 

parameters. The estimated parameters in overfitting model will be generally 

inefficient. 

The final assumption is that the stochastic disturbance terms is normally 

distributed. When scores on variables are skewed, correlations with other measures 

will be attenuated, and when the range of scores in the sample is restricted relative to 

the population correlations with scores on other variables will be attenuated (Hoyt et 

al., 2006).  Non-normally distributed variables can distort relationships and 

significance tests (Osborne & Waters, 2002). Outliers can influence both Type I and 

Type II errors and the overall accuracy of results (Osborne & Waters, 2002).  

In this thesis, the above assumptions in the classical regression model are 

studied and some of the most common and appropriate detections and remedies 

methods are discussed in order to diagnose and solve these problems. 

 

1.2 Objectives of the Study 

The objectives of the study are  

(i) To develop the classical multiple linear regression model. 

(ii) To check the violation of the classical multiple linear regression model. 

(iii) To modify the model by using the requiring remedies. 

 

1.3 Method of study 

In this study, the descriptive methods and multiple regression analysis are used 

to detect whether the assumptions are violated and to resolve. Linearity is examined 

through scatter plots, residual plot and remedy way is the transforming variables. 

Normality is checked with box plot and Kolmogorov-Smirnov test and transforming 

variable is used to remedy the normality. In detection of heteroscedasticity, White’s 



general heteroscedasticity test is used and the remedy methods of heteroscedasticity 

are redefining the variables. Micronumersity problem are remedied by adding the 

observations. Examination of tolerance (TOL) and Variance Influence Factor (VIF) 

are used in the detection of multicollinearity and then the variables assume that had 

the multicollinearity is removed.  The outliers of the X variables are exposed with the 

box-plots and the influence observations are observed with Cook’s distance. The 

Durbin-Watson test is used to detect the autocorrelation between the disturbances and 

remedy way is generalized difference equation method. 

 

1.4 Scope and Limitations of the Study  

 In the scope of this study, yearly secondary data of sesame production and rice 

production are used. The study periods of maize production and wheat production are 

from 1998 to 2018 in Myanmar, rice production is from 1966 to 2018 in Myanmar 

and sesame production is from 1989 to 2018 in Myanmar. The main sources of these 

data are various statistical yearbooks published from Central Statistical Organization 

(CSO) and Agricultural Statistics. 

 

1.5 Organization of the Study   

 This study consists of five chapters. Chapter I is introductory chapter 

including of rationale, objectives, method, scope and limitation and organization of 

the study. Chapter II is literature review and theoretical background is discussed in 

Chapter III. Chapter IV presents detection and remedy of the assumptions of multiple 

linear regression model. Finally, conclusion is presented in chapter V.  

 

 

 

 

 

 



CHAPTER-II 

LITERATURE REVIEW 

 The study by Andrew F. Hayes (2009) focuses on investigating the 

Homoscedasticity as an important assumption in OLS regression. Although the 

estimator of the regression parameters in OLS regression is unbiased when the 

homoscedasticity assumption is violated, the estimator of the covariance matrix of the 

parameter estimates can be biased and inconsistent under heteroscedasticity, which 

can produce significance tests and confidence intervals that can be liberal or 

conservative. After a brief description of heteroscedasticity and its effects on 

inference in OLS regression, this study discuss a family of heteroscedasticity-

consistent standard error estimators for OLS regression. 

 Mario Francisco Juan M. Vilar  (2007), the study focuses on two new tests for 

heteroscedasticity in nonparametric regression are presented and compared. The first 

of these tests consists in first estimating non parametrically the unknown conditional 

variance function and then using a classical least-squares test for a general linear 

model to test whether this function is constant. The second test is based on using an 

overall distance between a nonparametric estimators of the variance of the model 

under the assumption of homoscedasticity. A bootstrap algorithm is used to 

approximate the distribution of this test statistic. Extended versions of both 

procedures in two directions, first, in the content of dependent data, and second, in the 

case of testing if the variance function is a polynomial of a certain degree are also 

described. A broad simulation study is carried out to illustrate the finite sample 

performance of both tests when the observations are independent and when they are 

dependent. 

 Xu Zheng (2009), this paper presents new nonparametric tests for 

heteroscedasticity in nonlinear and nonparametric regression models. The tests have 

an asymptotic standard normal distribution under the null hypothesis of 

homoscedasticity and are robust against any form of heteroscedasticity. Amonte Carlo 

simulation with critical values obtained from the wild bootstrap procedure is provided 

to assess the finite sample performances of the tests. A real application of testing 

interest rate volatility functions illustrates the usefulness of the tests proposed. 



 Muhammad Aslam and Gulam Rasool Pasha (2000), this study focuses on the 

estimation of linear regression models in the presence of heteroscedasticity of 

unknown form, method of OLS does not provide the estimates with the smallest 

variances. In this situation, adaptive estimators are used, namely, nonparametric 

kernel estimator and nearest neighbor regression estimator. But these estimators rely 

on substantially restrictive conditions. In order to have accurate inferences in the 

presence of heteroscedasticity of unknown form, it is a usual practice to use 

heteroscedasticity consistent covariance matrix (HCCME). Following the idea behind 

the construction of HCCME, they formulate a new estimator. The Monte Carlo results 

show the encouraging performance of the proposed estimator in the sense of 

efficiency while comparing it with the available adaptive estimators especially in 

small samples that makes it more attractive in practical situations. 

 O. Baser (2007) Log models are widely used to deal with skewed outcome 

such as health expenditure. They improve the precision of the estimates and diminish 

the influence of outliers. Retransformation is generally required after estimation and 

the evidence of heteroscedasticity complicates the process. Smearing estimation 

suggested in the literature only works for homoscedastic errors or heteroscedastic 

errors due to categorical variables. Generalized linear models have been proposed as 

an alternative approach for log models when there exists unknown forms of 

heteroscedasticity. Recent literature shows that log models are superior to generalized 

linear models under certain conditions. They present a method for applying 

transformation that accounts for any form of heteroscedasticity. The proposed model 

assumes that errors achieve normality. Heteroscedasticity is modeled separately. 

Simulation studies are conducted. The Medstat Market Scan Database are used to 

estimate healthcare costs for asthma patients. Finally, a comparison of the method 

with smearing estimators is estimated. Log-transformed health care costs of asthma 

patients were normal. There was an evidence of heteroscedasticity. The simulation 

study, heteroscedasticity adjusted retransformed costs had the lowest mean squared 

error relative to estimators from smearing transformation or generalized linear model. 

This study shows that if log-transformed costs are normally distributed, 

heteroscedasticity adjusted retransformation produces more efficient results. 

 Donald W. K. Andrews and Patrik Guggenberger (2011), this paper introduces 

a new confidence interval (CI) for the autoregressive parameter (AR) in an AR (1) 

model that allows for conditional heteroscedasticity of general form and AR 



parameters that are less than or equal to unity. The CI is a modification of 

Mikusheva’s (2007) modification of Stock’s (1991) CI that employs the least squares 

estimator and a heteroscedasticity-robust variance estimator. The CI is shown to have 

correct asymptotic size and to be asymptotically similar (in a uniform sense). It does 

not require any tuning parameters. No existing procedures have these properties. 

Monte Carlo simulations show that the CI performs well in finite samples in terms of 

coverage probability and average length, for innovations with and without conditional 

heteroscedasticity. 

 Joris Pinkse (2006), this paper provides a nonparametric method of correcting 

for heteroscedasticity in linear regression models with independent and identically 

distributed (i.i.d.) observations. The new estimator requires an empiricist to select a 

small set (or index) of variables which are deemed to be the most important in 

explaining the present of heteroscedasticity. The new estimator is the most efficient 

estimator in a wide class of estimators for which the heteroscedasticity correction can 

only depend on the variables chosen. The nonparametric correction uses k-nearest 

neighbor (KNN) estimation. 

 Hausman, Newey, Woutersen, Chao, and Swanson (2009), this paper gives a 

relatively simple, well behaved solution to the problem of many instruments in 

heteroscedastic data. Such settings are common in microeconometric applications 

where many instruments are used to improve efficiency and allowance for 

heteroscedasticity is generally important. The solution is a Fuller (1977) like estimator 

and standard errors that are robust to heteroscedasticity and many instruments. The 

estimator has finite moments and high asymptotic efficiency in a range of cases. The 

standard errors are easy to compute, being like White’s (1982), with additional terms 

that account for many instruments. They are consistent under standard, many 

instrument, and many weak instrument asymptotic. Based on a series of Monte Carlo 

experiments, this study find that the estimators perform as well as LIML or Fuller 

(1977) under homoscedasticity, and have much lower bias and dispersion under 

heteroscedasticity, in nearly all cases considered. 

 Andreea Halunga, Chris D. Orme and Takashi Yamagata (2011) this paper 

proposes a heteroscedasticity-robust Breusch-Pagan test of the null hypothesis of zero 

cross-section (or contemporaneous) correlation in linear panel data models. The 

procedure allows for either strictly exogenous and/ or lagged dependent regressor 

variables, as well as quite general forms of both non-normality and heteroscedasticity 



in the error distribution. While the asymptotic validity of the test procedure, under the 

null, is predicated on the number of time series observation, T, being large relative to 

the number of cross-section units, N, independence of cross-sections is not assumed. 

Across a variety of experimental designs, a Monte Carlo study suggests that, in 

general (but not always), the predictions from asymptotic theory provide a good guide 

to the finite sample behavior of the test. In particular, with skewed errors and/or when 

N/T is not small, discrepancies can occur. However, for all the experimental designs, 

any one of three asymptotically valid wild bootstrap approximations (that are consider 

in this paper) gives very close agreement between the nominal and empirical 

significance levels of the test. Moreover, in comparison with wild bootstrap, the 

original Breush-Pagan test (Godfrey and Yamagata, 2011) the corresponding version 

of the heteroscedasticity-robust Breusch-Pagan test is more reliable. As an illustration, 

the proposed tests are applied to a dynamic growth model for a panel of 20 countries. 

 Timo Terasvirta (2011), this paper contains a brief survey of nonlinear models 

of autoregressive conditional heteroscedasticity. The models in question are 

parametric nonlinear extensions of the original model by Engle (1982). After 

presenting the individual models, linearity testing and parameter estimation are 

discussed. Forecasting volatility with nonlinear models based on multiplicative 

decomposition of the variance receive attention. 

 P. Marshall, T. Szikszai, V. LeMay and A. Kozak (1995), this paper contains 

testing the distributional assumptions of least squares linear regression. The error 

terms in least squares linear regression are assumed to be normally distributed with 

equal variance (homoscedastic), and independent of one another. If any of these 

distributional assumptions are violated, several of the desirable properties of a least 

squares fit may not hold. A variety of statistical tests of the assumptions is available. 

This paper are recommended for reasons of ease of use and discriminating power: the 

K
2
 test for testing for non-normality, either the Durbin-Watson test or the Q-test for 

testing autocorrelation and either Szroeter’s or White’s test for testing for 

heteroscedasticity. Violating any of the distributional assumptions of least squares 

linear regression can impact on the properties of the regression equation, most notably 

the efficiency and unbiasedness of the estimates of variance. A variety of tests exist 

that allow these assumptions to be tested. The order in which the tests are applied is 

important since violation of one of the assumptions may invalidate the results of 

subsequent tests. 



 Germa Coenders and Marc Saez (2000), this paper review some classic 

collinearity, heteroscedasticity and outlier diagnostics in multiple regression models. 

Some major problems are described in the Breusch-Pagan test, the condition number 

and the critical values for the studentized deleted residual and cook’s distance. 

Alternatives are suggested which consist of computing the conditional number of the 

correlation matrix instead of the rescaled moment matrix, using the NR
2
 statistic for 

the Breusch Pagan test, setting global-risk- based critical values for the studentized 

deleted residual, and drawing graphical displays for Cook’s distance. Very large 

differences between the original and alternative diagnostics emerge both on simulated 

data and on real data from a work absenteeism study. In this paper, major weaknesses 

of some commonly used collinearity heteroscedasticity and outlier diagnostics. The 

classic diagnostics have been compared to the alternatives on an empirical data set. 

The differences were large enough to lead to completely different conclusions 

depending on which diagnostics were employed. Further robustness problems of these 

diagnostics are not solved by the suggested alternatives. Critical values for 

studentized deleted residuals are very sensitive to the normality assumption. 

Heteroscedasticity tests are very sensitive to the presence of outliers because they 

involve squaring the residuals, which makes outliers to have a more serious effect in 

the auxiliary than in the main regression. 

 Deanna Schreiber-Gregory (2018), this paper contains violation recognition 

and control of logistic and linear regression assumptions. Regression analyses are one 

of the first steps in any analytic plan, regardless of plan complexity. Therefore, it is 

worth acknowledging that the choice and implementation of the wrong type of 

regression model, or the violation of its assumptions can have detrimental effects to 

the results and future directions of any analysis. Considering this, it is important to 

understand the assumptions of these models and be aware of the processes that can be 

utilized to test whether these assumptions are being violated. Some logistic regression 

assumptions that will reviewed include: dependent variable structure, observation 

independence, absence of multicollinearity, linearity of independent variables and log 

odds, and large sample size. For linear regression, the assumptions that will be 

reviewed include: linearity, multivariate normality, absence of multicollinearity and 

autocorrelation, homoscedasticity and measurement level. In order to ensure that the 

model is appropriately interpreted, it is important to make sure that all assumptions 

have been tested and any violations have been corrected.  



 Oyeyemi, G. M., Bolakale, A., Folorunsho, A.I. and Garba, M.K., this paper 

looks at the problem of micronumerosity in classical linear regression (CLR) models 

in other to prescribe appropriate remedy to the problem if encountered at any CLR 

problem. This study is aimed at determining an optimum sample size such that when 

the number of observations of variables in CLR is greater than then micronumerosity 

is not a problem and to suggest means of correcting micronumerosity in CLR. The 

optimum sample size for a given number of independent variables and level of 

correlation between the dependent and independent variables was determined. If there 

is presence of Micronumerosity in a data set, then additional data should be obtained. 

If it is not possible to increase the sample size, then the best method of remedying 

micronumerosity is to use factor analysis regression or principal component 

regression. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER III 

THEORETICAL BACKGROUND  

Multiple regression examines the relationship between a single outcome 

measure and several predictor or independent variables (Jaccard et al., 2006). 

Statistical tests rely upon certain assumptions about the variables used in an analysis 

(Osborne & Waters, 2002). The correct use of the multiple regression model requires 

that several critical assumptions be satisfied in order to apply the model and establish 

validity (Poole & O’Farrell, 1971). Inferences and generalizations about the theory 

are only valid if the assumptions in an analysis have been tested and fulfilled.  

Multiple regression is widely used to estimate the size and significance of the 

effects of a number of independent variables on a dependent variable (Neale, Eaves, 

Kendler, Heath, & Kessler, 1994).  Before a complete regression analysis can be 

performed, the assumptions concerning the original data must be made (Sevier, 1957).  

Ignoring the regression assumptions contribute to wrong validity estimates 

(Antonakis, & Deitz, 2011).  When the assumptions are not met, the results may result 

in Type I or Type II errors, or over- or under-estimation of significance of effect size 

(Osborne & Waters, 2002).   

Meaningful data analysis relies on the researcher’s understanding and testing 

of the assumptions and the consequences of violations.  The extant research suggests 

that few articles are reporting having tested the assumptions of the statistical tests they 

rely on for drawing their conclusions (Antonakis & Dietz, 2011; Osborne & Waters, 

2002; Poole & O’Farrell, 1971). The validation and reliability of theory and future 

research relies on diligence in meeting assumptions of MR. This section specifically 

define each assumption, review consequences of assumption failure, and address how 

to test for each assumption, and the interpretation of results. 

 

3.1 Linearity   

 This assumption is the most important, as it directly relates to the bias of the 

results of the whole analysis (Keith, 2006).  Linearity defines the dependent variable 

as a linear function of the predictor (independent) variables (Darlington, 1968).  

Multiple regression can accurately estimate the relationship between dependent and 

independent variables when the relationship is linear in nature (Osborne & Waters, 

2002).  



 Linearity can be interpreted in two different ways. The first interpretation is 

linearity in the variables. It is that the conditional expectation of Y is a linear function 

of Xi such as(  ∣∣   )          . Geometrically, the regression curve in this case 

is a straight line. In this interpretation, a regression function such as;  

 ( ∣∣   )         
 
 

is not a linear function because the variable X appears with a power or index of 2 

(Gujarati). 

 The second interpretation of linearity is that the conditional expectation of Y, 

E (Y∣X) is a linear function of the parameters, the β’s; it may or may not be linear in 

the variable X. In this interpretation  (  ∣∣   )         
 
is a linear (in the 

parameter) regression model. The model  (  ∣∣   )    +  
    which is nonlinear in 

the parameter     . This model is a nonlinear (in the parameter) regression model 

(Gujarati). 

 Linear in the parameters as well as the variables is a linear regression model 

and so is a model that is linear in the parameter but nonlinear in the variables. If a 

model is nonlinear in the parameters it is a nonlinear (in the parameter) regression 

model whether the variables of such a model are linear or not. For some models look 

nonlinear in the parameters but are inherently or intrinsically linear because with 

suitable transformation they can be made linear in the parameter regression models. 

But if such models cannot be linearized in the parameters, they are called intrinsically 

nonlinear regression model (Gujarati). 

 

3.1.1 Consequences of Violation of Linearity 

If linearity is violated, all the estimates of the regression including regression 

coefficients, standard errors, and tests of statistical significance may be biased (Keith, 

2006).  If the relationship between the dependent and independent variables is not 

linear, the results of the regression analysis will under- or over- estimate the true 

relationship and increase the risk of Type I and Type II errors (Osborne & Waters, 

2002). When bias occurs it is likely that it does not reproduce the true population 

values (Keith, 2006).  Violation of this assumption threatens the meaning of the 

parameters estimated in the analysis (Keith, 2006).  

 

 



 

3.1.2 Detection of Linearity 

Examination of the residual plots also indicate linear vs. curvilinear 

relationships (Keith, 2006; Osborne & Waters, 2002). Residual plots showing the 

standardized residuals vs. the predicted values are very useful in detecting violation in 

Linearity (Stevens, 2009). The residuals magnify the departures from linearity (Keith, 

2006). If there is no departure from linearity, a random scatter about the horizontal 

line would be seen. Any systematic pattern or clustering of the residuals suggests 

violation (Stevens, 2009). If each parameter test is significant and R square is high, 

linearity assumption is satisfied. Another way for detection of linearity is scatter plot 

that must be a straight line. If not, linearity assumption is violated. In this paper, 

scatter plots and residual plots are used to diagnosis the linearity assumption. 

 

3.1.3 Remedy of Violation of linearity  

 The relationship between the dependent and independent variables is linear. 

However, this is not always the case. The data without the linearity suggest a 

nonlinear (or curvilinear) as follows: 

                        ̂                        (3.1) 

where b0 and b1 are constants. 

                           
 ∑   ∑ ∑ 

 ∑   (∑ ) 
                (3.2) 

                           ̅     ̅                            (3.3) 

 Without the linearity, the data must be transformed for one or both variables in 

order to display it as a linear model. There are many transformation ways such as 

double log transformation, semi log transformation, squared root transformation) to 

satisfy the linearity assumption. A common method of transformation is logarithmic 

transformation makes. 

 A linear relationship assumes that for every one-unit change on X, Y changes 

by a constant amount. A curvilinear model assumes that Y changes by a different 

amount each time.  The rules of logarithms allow to express formula: 

                             ( ̂)            ( )               (3.4)  



where, 

                               
 ∑   (∑  )(∑ )

 ∑   (∑ ) 
                                                           (3.5)
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∑    ( )

 
                          (3.6) 

 

3.2 Fixed X Values or X Values Independent of the Error Term 

 One of the assumptions was that the explanatory variables or regressors were 

either fixed or nonstochastic or if stochastic, they were independent of the error term. 

The X variable (s) can be assumed nonstochastic for the following reasons: 

1. First, this is done initially to simplify the analysis and to introduce the reader 

to the complexities of regression analysis gradually. 

2. Second, in experimental situations it may not be unrealistic to assume that the 

X values are fixed. 

3. Third, even if the X variables are stochastic, the statistical results of linear 

regression based on the case of fixed regressors are valid when the X’s are 

random, provided that some conditions are met. One condition is that 

regressor X and error ui are independent. 

Violation of this assumption can occur because there is simultaneity between the 

independent and dependent variables, omitted variable bias or measurement error in 

the dependent variables. 

 

3.2.1 Consequences of Violation of Fixed X Values 

Violation this assumption biases the coefficient estimates. To understand why 

this bias occurs, keep in mind that the error term always explains some of the 

variability in the dependent variable. However, when an independent variable 

correlates with the error term, OLS incorrectly attributes some of the variance that the 

error term actually explains to the independent variable instead. 

 

3.2.2 Detection of Fixed X Values 

This assumption is assumed that the X variables and the error term are 

independent. Therefore, the covariance of Xi and ui must be zero. If    (     )   , 

this assumption is violated. 



3.2.3 Remedy of Violation of Fixed X Values 

 If an independent variable is correlated with the error term, the independent 

variable can be used to predict the error term which violates the notation that the error 

term represents unpredictable random error. The remedy ways of fixed X values or X 

values independent of the error terms are the omission of a variable and the 

imposition of any correct restriction. 

 

3.3 Zero Mean Value of Disturbances ui 

This assumption states that the mean value of ui conditional upon the given Xi 

is zero. This assumption should not be difficult to comprehend. The factors not 

explicitly included in the model and subsumed in ui, do not systematically affect the 

mean value of Y. The positive ui values cancel out the negative ui values so that their 

average or mean effect on Y is zero. The assumption E (ui∣Xi) =0 implies that  

 (  ∣∣   )          . Therefore, the two assumption are equivalent. 

If the conditional mean of one random variable given another random variable 

is zero, the covariance between the two variables is zero and hence the two variables 

are uncorrelated. Therefore, this assumption implies that Xi and ui are uncorrelated. 

 

3.3.1 Consequences of Violation of Zero Mean Value of Disturbances ui 

 If this assumption is not fulfilled or violated, the original intercept cannot be 

estimated because the original intercept added the error terms can be available.  

 

3.3.2 Detection of Violation of Zero Mean Value of Disturbances ui 

 Given the value of Xi, the mean or expected value of random disturbance term 

ui is zero. Symbolically,  (   ∣∣   )    or if X is nonstochastic,  (  )   . 

If  (   ∣∣   )    or  (  )   , this assumption is violated. 

 

3.3.3 Remedy of Violation of Zero Mean Value of Disturbances ui 

 When the population regression function (PRF) is expressed as  

                                                                                                           (3.7) 

X and u which represent the influence of all omitted variables have separate 

influences on Y. Thus, if X and u are correlated, it is not possible to assess their 

individual effect on Y. It is quite possible that the error term actually includes some 



variables that should have been included as additional regressors in the model. This 

assumption is another way of stating that there is no specification error in the chosen 

regression model. 

 

3.4 Homoscedasticity or Constant Variance of Disturbances ui 

 One of the important assumptions of the classical linear regression model is 

that the variance of each disturbance term ui conditional on the chosen value of the 

explanatory variables is some constant number equal to ϭ
2
. This is the assumption of 

homoscedasticity or equal (homo) spread (scedsticity) that is equal variance.  

Symbolically, 

                                         E (ui
2
) = Ϭ

2
             , i=1, 2, 3… n                                   (3.8) 

The conditional variance of Yi increase as X increases. Here, the variances of Yi are 

not the same. Hence, there is heteroscedasticity. Symbolically, 

                                         E (ui
2
) = Ϭi

2
 , i=1, 2, 3… n             (3.9)

 

 Heteroscedasticity can be divided into pure and impure version. Pure 

heteroscedasticity is caused by the error term of the correctly specified equation; 

impure heteroscedasticity is caused by a specification error such as an omitted 

variable. 

 

3.4.1 Consequences of Heteroscedasticity 

 If the error term of an equation is known to be heteroscedastic, there are three 

major consequences: 

1. Pure heteroscedasticity does not cause bias in the coefficient estimates. Even if 

the error term of an equation is known to be purely heteroskedastic, that 

heteroscedasticity will not cause bias in the OLS estimates of the coefficient. 

This is true because with pure heteroscedasticity, none of the independent 

variable is correlated with the error term. As a result, pure heteroscedasticity 

still has property that: 

                                 ( ̂)    for all βs            (3.10) 

2. Heteroscedasticity increases the variances of the  ̂ distribution. If the error 

term of an equation is heteroskedastic with respect to a proportionality factor 

Z: 

                                               (  )    
   

                         (3.11) 



The minimum variance portion of the Gauss-Markov Theorem cannot be 

proven because there are other linear unbiased estimators that have smaller 

variances. This is because the heteroskedastic error term causes the dependent 

variable to fluctuate in a way that the OLS estimation procedure attributes to 

the independent variable. Thus, OLS is more likely to misestimate the true β in 

the face of heteroskedasticity. On balance, the β’s are still unbiased because 

overestimates are just as likely as underestimates; however, these error 

increase the variance of the distribution of the estimates, increasing the 

amount that any given estimate is likely to differ from the β. 

3. Heteroskedasticity causes OLS to tend to underestimate the variance and 

standard error of the coefficients. As result, neither the t statistic nor the F 

statistic can be relied on in the face of uncorrelated heteroskedasticity. In 

practice, OLS usually ends up with higher t scores than would be obtained if 

the error term were homoscedastic, sometimes leading researchers to reject 

null hypotheses that shouldn’t be rejected. OLS estimator is still unbiased in 

the face of heteroskedasticity. The heteroskedasticity has caused the  ̂s to be 

farther from the true value, however and so the variance of the distribution of 

the  ̂s has increased. 

 

3.4.2 Detection of Heteroscedasticity 

 Heteroscedasticity can be detected by using the informal method such as 

graphical method and formal method such as Park test, Glejser test, Spearman’s Rank 

Correlation test and Goldfeld-Quandt test, etc. In this study, White’s General 

Heteroscedasticity test are used. Unlike the Goldfeld-Quandt test, which requires 

reordering the observations with respect to the X variable that supposedly caused 

heteroscedasticity, or the BPG test, which is sensitive to the normality assumption, the 

general test of heteroscedastcity proposed by White does not rely on the normality 

assumption and is easy to implement. Consider the regression model: 

                                                    (3.12)

  

The White test proceed as follows: 

Step 1. Given the data, estimate Eq (3.12) and obtain the residuals, ̂  

Step 2. Run the following (auxiliary) regression: 



 ̂ 
                              (   ) 

                  

                 (3.13) 

Obtain the R
2
 this (auxiliary) regression. 

Step 3. Under the null hypothesis that there is no heteroscedasticity, it can be shown 

that sample size (n) times the R
2
 obtained from the (auxiliary) regression 

asymptotically follows the chi-square distribution with degree of freedom equal to the 

number of regressors (excluding the constant term) in the auxiliary regression. That is,  

                                          
                                                                     (3.14)  

Step 4. If the chi-square value obtained in Eq (3.14) exceeds the critical chi-square 

value at the chosen level of significance, the conclusion that there is 

heteroscedasticity. If it does not exceed the critical chi-square value, there is no 

heteroscedasticity, which is to say that in the auxiliary regression (3.13),  

α2 = α3 =…=0. 

3.4.3 Remedy of Heteroscedasticity  

 There are many remedial methods to remove the heteroscedasticity. There are 

weighted least squares method, White’s heteroscedasticity consistent variances and 

standard errors and redefining method. A redefinition of the variables often is useful 

in allowing the estimated equation to focus more on the behavioral aspect of the 

relations. Such is a rethinking is a difficult and discouraging process because it 

appears to dismiss all the work already done. However, once the theoretical work has 

been reviewed, the alternative approaches that are discovered are often exciting in that 

they often possible ways to avoid problem that had previously seemed 

insurmountable. 

 In some cases, the only redefinition that’s needed to rid an equation of 

heteroscedasticity is to switch from a linear functional form to a double-log functional 

form. The double-log form has inherently less variation than the linear form, so it’s 

less likely to encounter heteroscedasticity. In addition, there are many research topics 

for which the double-log is just as theatrically logical as the linear form. This is 

especially true if the linear form was chosen by default, as in often the case. In other 

situation, it might to necessary to completely rethink the research project in terms of 

underlying theory.    

 



3.5 No Autocorrelation between the Disturbances or Independence of Errors 

 The term autocorrelation may be defined as correlation between members of 

series of the observations ordered in time or space. In the regression context, the 

classical linear regression model assumes that such autocorrelation does not exist in 

the disturbances ui. Symbolically, 

                            (      ∣∣      )   (    )                  (3.15) 

The classical model assumes that the disturbance term relating to any observation is 

not influenced by the disturbance term relating to any other observation. However, if 

there is such a dependence such autocorrelation does not exist in the disturbances ui. 

Symbolically, 

                         (    )                     (3.16) 

 

3.5.1 Consequences of Autocorrelation between the Disturbances   

When independence of errors is violated standard scores and significance tests 

will not be accurate and there is increased risk of Type I error (Keith, 2006; Stevens, 

2009).  When data are not drawn independently from the population, the result is a 

risk of violating the assumption that errors are independent (Keith, 2002).  This means 

that violations of this assumption can underestimate standard errors, and label 

variables as statistically significant when they are not (Keith, 2006).  In the case of 

MR, effect sizes of other variables can be over-estimated if the covariate is not 

reliably measured (Osborne & Waters, 2002).  Essentially what occurs is that the full 

effect of the covariate is not removed (Osborne & Waters, 2002).  Violation of this 

assumption therefore threatens the interpretations of the analysis (Keith, 2006). 

 

3.5.2 Detection of Autocorrelation between the Disturbances 

 The autocorrelation can be detected with graphical method, the Runs test, 

Durbin-Watson d test and the Breusch-Godfrey (BG) test. The most celebrated test 

for detecting autocorrelation is Durbin-Watson d statistic which is defined as    

                            
∑ ( ̂   ̂   )

    
   

∑  ̂ 
    

   
              (3.17) 

 A great advantage of the d statistic is that it is based on the estimated 

residuals, which are routinely computed in regression analysis. It is important to note 

the assumptions underlying the d statistic. 



1. The regression model includes the intercept term. If it is not present, as in the 

case of the regression through the origin, it is essential to rerun the regression 

including the intercept term to obtain the RSS. 

2. The explanatory variables, the X’s are nonstochastic or fixed in repeated 

sampling. 

3. The disturbance ut is generated by the first-order autoregressive scheme:  

           . Therefore, it cannot be used to detect higher order 

autoregressive schemes. 

4. The error term ut is assumed to be normally distributed. 

5. The regression model does not include the lagged values of the dependent 

variable as one of the explanatory variables. Thus, the test is inapplicable in 

models of the following type: 

                                                                            (3.18) 

            where, Yt-1 is the one period lagged value of Y. 

6. There are no missing observations in the data. 

 The mechanics of the Durbin-Watson test are as follows, assuming that the 

assumptions underlying the test fulfilled: 

1. Run the OLS regression and obtain the residuals. 

2. Compute d from Eq (1)  

3. For the given sample size and given number of explanatory variables, find out 

the critical dL and dU values. 

4. The decision rules are also followed in the following table: 

Durbin-Watson d test: Decision Rules 

Null Hypothesis Decision If 

No positive autocorrelation   

No positive autocorrelation 

No negative autocorrelation 

No negative autocorrelation 

No autocorrelation, positive or negative 

Reject  

No  decision  

Reject  

No decision 

Do not reject 

0 < d <  dL 

dL < d < dU  

4 - dL < d < 4  

4 – dU < d < 4 - dL 

dU < d < 4 - dL  

 

 

 

 



3.5.3 Remedy of Autocorrelation between the Disturbances 

 In remedy of autocorrelation between the disturbances, there are two case: (1) 

  is known and   is not known. When   is known, generalized, or qusi, difference 

equation are used and when   is not known, first difference equation are used. Since 

the    can be gotten based on Durbin-Watson d statistic, the generalized difference 

equation are used in this study. The generalized difference equation are used to 

remedy of autocorrelation. Consider the k-variable regression model: 

                                                         (3.19) 

and assume that the error term follows the AR (1) scheme, namely, 

             -1 < ρ <1              (3.20) 

If Eq (1) holds true at time t, it also holds true at time (t-1). Hence, 

                                                  (3.21) 

Multiplying eq (3.21) by ρ on both sides, 

                                              (3.22) 

Subtracting Eq (3.22) from Eq (3.19) gives 

(        )    (   )    (        )      (            )    (3.23) 

Where,    (        ) 

Eq (3.23) can be expressed as  

  
    

    
   

                    (3.24) 

where  

  
    (   ),  

  (        ) ,    
  (        ) and   

     

 Since the error term in Eq (3.24) satisfies the usual OLS assumptions, OLS 

can be applied to the transformed variables Y
*
 and X

*
 and estimators can be obtained 

with all the optimum properties, namely, BLUE. In this differencing procedure, one 

observation is lost because the first observation has no antecedent. To avoid this loss 

of one observation, the first observation on Y and X is transformed as follows: 

  √     and   √    . 



 If the first-difference transformation cannot be used because ρ is not 

sufficiently close to unity, an easy method of estimating ρ from the relationship 

between d and ρ has. 

                                    
 

 
              (3.25) 

Thus, in reasonably large samples one can obtain ρ from Eq (3.25) and use it to 

transform the data as shown in generalized difference equation (3.23). The 

relationship between ρ and d given in Eq (3.25) may not hold true in small samples. 

 

3.6 No Micronumersity 

 The problem of micronumerosity simply means small sample size. 

Micronumerosity is a situation whereby the sample size is not sufficient to obtain a 

precise (unbiased) estimate with relatively least standard errors. A regression model 

with Ordinary Least Squares (OLS) method cannot be estimated in a case of exact 

micronumerosity or having fewer observations than parameters to be estimated. Also, 

large standard errors have with near micronumerosity which means the number of 

observations barely exceeds the number of parameters to be estimated. Exact 

micronumerosity arises when n, the sample size, is zero, in which case any kind of 

estimation is impossible. Near micronumerosity arises when the number of 

observations barely exceeds the number of parameters to be estimated. 

 The number of observations n must be greater than the number of parameters 

to be estimated. If the sample size is less or equal to the number of predictors in a 

classical linear regression equations, it is impossible to estimate the regression 

parameters or fit an appropriate model to the data. If the sample size barely exceeds 

the number of predictors, there is lack of fit in the regression equation even if all other 

basic assumptions of classical linear regression hold. 

 

3.6.1 Consequences of Micronumersity 

 Although the best linear unbiased estimator (BLUE), the OLS estimators have 

large variances and covariances, making precise estimation difficult. Thus, the 

confidence intervals tend to be much wider, leading to the acceptance of the “zero 

null hypothesis” more readily. The t-ratio of one or more coefficients tends to be 

statistically insignificant. Although the t ratio of one or more coefficients is 

statistically insignificant, R
2
, the overall measure of goodness of fit can be very high. 



The OLS estimators and their standard errors can be sensitive to small changes in the 

data. 

 

3.6.2 Detection of Micronumersity 

 The dependent variable is regressed on the independent variable (s) and the 

model diagnosis using Analysis of Variance (ANOVA) is also regressed. If the F-

statistic computed is significant at 0.01 level of significance, then the sample size n 

used is accepted as the minimum sample size required to avert micronumerosity, 

otherwise, the sample size is rejected and another sample is taken by increasing the 

sample size until a significant model is obtained. 

 At the end of varying the sample size, the correlation between the dependent 

and independent variable(s) was also varied to see the effect of correlation on the 

sample size required. 

 

3.6.3 Remedy of Micronumersity 

 If there is presence of micronumersity in a data set, then additional data should 

be obtained. If it is not possible to increase the sample size, then the best method of 

remedying micronumersity is to use factor analysis regression or principal component 

regression. 

 

3.7 The Nature of X Variables 

 The X value in a given sample must not all be the same, that is, the variables 

must vary. Technically, var (X) must be a positive number. The variation in both X 

and Y is essential to use regression analysis as a research tool. Furthermore, there can 

be no outliers in the values of X variable. From a practical perspective, two types of 

outliers are problematic in regression analysis. On the one hand, some observations 

may fail to be predicted by the model with a reasonable degree of accuracy. This type 

of outliers may reveal the fact that several populations are mixed in the data set or that 

some relevant variables have been omitted. On the other hand, some observations may 

be influential in the sense that their presence in the data set substantially modifies the 

estimates. This type of outliers weakens the conclusions which may be drawn from 

the model. 

3.7.1 Consequences of the Nature of X Variables 



 If all the X values are identical, then     ̅ and the denominator of that 

equation will be zero, making it impossible to estimate β2 and β1. If there is very little 

variation in X, much of the variation in Y can be explain. When there is outliers in the 

values of X variables, this observation influence its own prediction and its means and 

inflate the standard error with which it is being standardized. 

 

3.7.2 Detection of the Nature of X Variables 

 Box plot is the best way in detecting the outliers. If the dot has outside the box 

plot, this plot is assumed that have the outliers.  Cook’s distance (Cook, 1977) is the 

usual statistic which is employed to detect influential observations. A particular 

multivariate distribution model should be assumed for X, which would often be 

unreasonable. Cook (1977) and Weisberg (1980) suggest using the 50
th

 percentile of 

the F distribution with k and N-k-1 degree of freedom. 

 

3.7.3 Remedy of the Nature of X Variables 

 When the data has the outliers or influential observations, this observation is 

dropped. For each parameter’s confidence interval, one could report the lowest value 

for the lower limits and the highest value for the upper limits found when dropping 

different observations (Leamer, 1979). The Cook’s distance does not use any limits at 

all but drawing a scree plot of Cook’s distances ordered from highest to lowest. This 

plot will be useful to separate the few most influential observations from the many 

least influential ones. A sensitivity analysis of the estimates should then be carried out 

by hand by sequentially dropping the identified observations and qualitatively 

evaluating the extent to which the conclusions to be drawn from the model change. 

This is what ultimately counts when evaluating influence of the observations and is 

far more useful than blindly using a fixed critical value. The removal of the 

observations with the highest Cook’s distances did lead to some substantial changes in 

the model. 

 

3.8 No Multicollinearity between the X variables 

Multicollinearity (also called collinearity) refers to the assumption that the 

independent variables are uncorrelated (Darlington, 1968; Keith, 2006).  The 

researcher is able to interpret regression coefficients as the effects of the independent 

variables on the dependent variables when collinearity is low (Keith, 2006; Poole & 



O’Farrell, 1971).  This means that inferences about the causes and effects of variables 

can be made reliably.  Multicollinearity occurs when several independent variables 

correlate at high levels with one another, or when one independent variable is a near 

linear combination of other independent variables (Keith, 2006).  The more variables 

overlap (correlate) the less able researchers can separate the effects of variables.  In 

MR the independent variables are allowed to be correlated to some degree (Cohen, 

1968; Darlington, 1968; Hoyt et al., 2006; Neale et al., 1994).  The regression is 

designed to allow for this, and provides the proportions of the overlapping variance 

(Cohen, 2968).  Multicollinearlity does not reduce the predictive power or reliability 

of the model as a whole, at least within the sample data set. 

Many sources of multicollinearity are 

1. The data collection method employed. 

2. Constraints on the model or in the population being sampled. 

3. Model Specification. 

4. An overdetermined model. 

 

3.8.1 Consequences of Multicollinearity  

Multicollinearity can result in misleading and unusual results, inflated 

standard errors, reduced power of the regression coefficients that create a need for 

larger sample sizes (Jaccard et al., 2006; Keith, 2006).  Interpretations and 

conclusions based on the size of the regression coefficients, their standard errors, or 

associated t-tests may be misleading because of the confounding effects of 

collinearity (Mason & Perreault Jr., 1991).  The result is that the researcher can 

underestimate the relevance of a predictor, the hypothesis testing of interaction effects 

is hampered, and the power for detecting the moderation relationship is reduced 

because of the intercorrelation of the predictor variables (Jaccard et al., 2006; Shieh, 

2010). 

 

3.8.2 Detection of Multicollinearity  

High R
2
 but few significant t ratios, high pair- wise correlations among 

regressors, examination of partial correlations, auxiliary regression, eigenvalues and 

condition index, tolerance and variance inflation factor are tools to detect the 

multicollinearity. The effect of a given level of collinearity can be evaluated in 

conjunction with the other factors of sample size, R2, and magnitude of the 



coefficients (Mason & Perreault Jr., 1991). Tolerance measures the influence of one 

independent variable on all other independent variables. Tolerance levels for 

correlations range from zero (no independence) to one (completely independent) 

(Keith, 2006).  The VIF is an index of the amount that the variance of each regression 

coefficient is increased over that with uncorrelated independent variables (Keith, 

2006).  When a predictor variable has a strong linear association with other predictor 

variables, the associated VIF is large and is evidence of multicollinearity (Shieh, 

2010).  Small values for tolerance and large VIF values show the presence of 

multicollinearity (Keith, 2006). 

 

3.8.3 Remedy of Multicollinearity 

 The remedial measures are a priori information, dropping a variable (s) and 

specification bias, transformation of variables and additional or new data, etc. When 

faced with several multicollinearity, one of the simplest things to do is to drop one of 

the collinear variables. When one of the collinear variables are dropped, the 

regression which shows that whereas in the original model the variable was 

statistically insignificant, it become highly significant is obtained. 

 But in dropping a variable from the model, a specification bias or specification 

error may be committed. Specification bias arises from incorrect specification of the 

model used in the analysis. Dropping a variable from the model to alleviate the 

problem of multicollinearity may lead to the specification bias. Hence, the remedy 

may be worse than the disease in some situations because, whereas multicollinearity 

may prevent precise estimation of the parameters of the model, omitting a variable 

may seriously mislead us as to the true values of the parameters.  

 

3.9 No Specification Errors or No Specification Bias 

 One of the assumptions of the classical linear regression model (CLRM) is 

that the regression model used in the analysis is correctly specified: If the model is not 

correctly specified, the problem of model specification error or model specification 

bias. When one of the assumptions is violated, specification error is caused. A model 

chosen for empirical analysis should satisfy the following criteria: 

1. Be data admissible. 

2. Be consistent with theory. 

3. Have weakly exogenous regressors. 



4. Exhibit parameter constancy. 

5. Exhibit data coherency. 

6. Be encompassing. 

In practice one is likely to commit various model specification errors. The type of 

specification errors are 

1. Omission of a relevant variable(s). 

2. Inclusion of an unnecessary variable(s). 

3. Adoption of the wrong functional form. 

4. Errors of measurement. 

5. Incorrect specification of the stochastic error term. 

6. Assumption that the error term is normally distributed. 

 

3.9.1 Consequences of Specification Errors  

 The consequences of some type of specification errors are described as follow.  

(i) The consequences of omitting variable are: 

1. If the left-out, or omitted, variable is corrected with the included 

variable, the correlation coefficient between the two variables is 

nonzero and the coefficients in the underfitting model are biased as 

well as inconsistent. The bias does not disappear as the sample size 

gets larger. 

2. Even if the independent variables are not correlated each other, the 

slope coefficient in the underfitting model is biased, although the 

intercept coefficient in this model is unbiased. 

3. The disturbance variance is incorrectly estimated. 

4. The conventionally measured variance of the intercept coefficient in 

the underfitting model is a biased estimator of the variance of the 

intercept coefficient in the true model. 

5. The usual confidence interval and hypothesis testing procedures are 

likely to give misleading conclusions about the statistical significance 

of the estimated parameters. 

6. The forecasts based on the incorrect model and the forecast confidence 

intervals will be unreliable. 

 

(ii) The consequences of inclusion of an irrelevant variable are: 



1. The OLS estimators of the parameters of the incorrect model are all 

unbiased and consistent. 

2. The error variance is correctly estimated. 

3. The usual confidence interval and hypothesis testing procedures 

remain valid. 

4. However, the estimated parameters in overfitting model will be 

generally inefficient. 

(iii) The consequences of errors of measurement are: 

1. Although the errors of measurement in the dependent variable still give 

unbiased estimates of the parameters and their variances, the estimated 

are now larger than in the case where there are no such errors of 

measurement. 

2. The errors of measurement in the explanatory variable can be shown 

that the OLS estimators are not only biased but also inconsistent, they 

remain biased even if the sample size increases indefinitely. 

(iv) The consequences of other specification error are that the parameter is 

biased estimator, inconsistent, large standard error.  

 

3.9.2 Detection of Specification Errors  

(i) Detecting the Presence of Unnecessary Variables 

Suppose a k-vaiables model: 

                                                          (3.26) 

In given model, whether one or more regressors are really relevant by the usual t and 

F tests. The t and F tests should not be used to build a model iteratively, that is, 

initially Y is not related to X2 only because  ̂  is statistically significant and then 

expand the model to include X3 and decide to keep that variable in the model if  ̂  

turns out to be statistically significant and so on. This strategy of building a model is 

called data mining by the somewhat pejorative term. 

(ii) Detecting the Omitted Variables and Incorrect Functional Form 

Examination of residuals is a good visual diagnostic to detect autocorrelation 

or heteroscedasticit. But these residuals can also be examined especially in cross- 

sectional data for the model speciation errors such as omission of an important 



variable or incorrect functional form. If in fact there are such errors, a plot of the 

residuals will exhibit distinct patterns. 

By the Durbin-Watson d statistic Once Again, from Durbin-Watson tables if 

the estimated d value is significant, then one can accept the hypothesis of model mis- 

specification. The other test such as Ramsey’s RESET test and Lagrange Multiplier 

(LM) test for adding variables are also used to detect omitted variable and incorrect 

functional form.  

Most specification errors such as normality of the disturbances, error of 

measurement are also the same with some assumptions. The violation of the 

assumptions causes specification errors. Hence, detecting ways of the assumptions 

can also be used. 

 

3.9.3 Remedy of Specification Errors 

The way of the remedy for the presence of unnecessary variables is the 

dropping unnecessary variables and the way of the remedy for omitted variables and 

incorrect functional form are the adding the important variables and the using changed 

the function form. One way of the remedy for error of measurement is the use of 

instrumental or proxy variables that although highly correlated with the original X 

variables, are correlated with the equation and measurement of error terms. If such 

proxy variables can be found, then one can obtain a consistent estimate of β. The 

other specification errors type remedy as the ways of some assumptions that are same. 

 

3.10 Normality of the Disturbance Terms 

 Multiple regression assumes that variables have normal distributions 

(Darlington, 1968; Osborne & Waters, 2002).  This means that errors are normally 

distributed, and that a plot of the values of the residuals will approximate a normal 

curve (Keith, 2006).  The assumption is based on the shape of normal distribution and 

gives the researcher knowledge about what values to expect (Keith, 2006).  Once the 

sampling distribution of the mean is known, it is possible to make predictions for a 

new sample (Keith, 2006). 

The several reasons that employ the normality assumption: 

1. The ui represent the combined influence of a large number of independent 

variables that are not explicitly introduced in the regression model. 



2. A variant of central limit theorem (CLT) states that, even if the number of 

variables is not very large or if these variables are not strictly independent, 

their sum still be normally distributed. 

3. With the normality assumption, the probability distributions of OLS estimators 

can be easily derived. 

4. The normal distribution is a comparatively simple distribution involving only 

two parameters (mean and variance). 

5. If sample size is small or finite, the normality assumption assumes a critical 

roles. It not only helps to derive the exact probability distributions of OLS 

estimators but also enables to use the t, F and χ
2
 statistical tests for regression 

models. 

6. In large samples, t and F statistics have approximately the t and F probability 

distributions so that the t and F tests that are based on the assumption that the 

error term is normally distributed can still be applied validly. 

 

3.10.1 Consequences of Violation of Normality of the Disturbance Terms  

When scores on variables are skewed, correlations with other measures will be 

attenuated, and when the range of scores in the sample is restricted relative to the 

population correlations with scores on other variables will be attenuated (Hoyt et al., 

2006).  Non-normally distributed variables can distort relationships and significance 

tests (Osborne & Waters, 2002). Outliers can influence both Type I and Type II errors 

and the overall accuracy of results (Osborne & Waters, 2002).  

 

3.10.2 Detection of Normality of the Disturbance Terms 

The researcher can test this assumption through several pieces of information: 

visual inspection of data plots, skew, kurtosis, and P-Plots (Osborne & Waters, 2002).  

Data cleaning can also be important in checking this assumption through the 

identification of outliers. Statistical software has tools designed for testing this 

assumption.  Skewness and kurtosis can be checked in the statistic tables, and values 

that are close to zero indicate normal distribution. Normality can further be checked 

through histograms of the standardized residuals (Stevens, 2009).  

 

 

 



3.10.3 Remedy of Violation of Normality of the Disturbance Terms 

 If normality assumption cannot be maintain on the basis of various normality 

tests, various transformation ways such as double log transformation, semi log 

transformation, square root transformation and reflect and square root transformation 

are used or bootstrapping is used. The basic idea underlying bootstrapping is to churn 

a given sample over and over again and then obtain the sampling distributions of the 

parameters of interest. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER IV 

DETECTING AND REMEDY OF THE ASSUMPTIONS OF 

MULTIPLE LINEAR REGRESSION MODEL 

 In this chapter, descriptive analysis for production, pesticides, weir and quality 

seeds of Maize, for production, pesticides and substitution sown of Wheat, for 

production, sown and yield of Rice and for production, sown, harvested, irrigation, 

loan, quality seeds and pesticides of Sesame are described. Moreover, detecting and 

remedy of the assumptions of multiple linear regression model for each of crops 

(Maize, Wheat, Rice and Sesame) are also presented. 

 

4.1 Descriptive Data Analysis 

In this section, mean value, standard deviation (Std.Dev), minimum value 

(Min) and maximum value (Max) of each crop in Myanmar are expressed. The 

descriptive Statistics for production (PROD), pesticides (PESTI), weir (WR) and 

quality seeds (QUALI) of Maize in Myanmar is shown in following Table (4.1).  

Table (4.1) 

Descriptive Statistics for Maize in Myanmar 

Variable Mean Std.Dev Min Max 

PROD 1068.71 542.17 297.9 1909 

PESTI 78570.67 210229.42 111 910543 

WR 25.67 8.47 7 35 

QUALI 8894.05 13461.00 1192 60641 

          Source: Appendix (B11) 

In Table (4.1), maize production ranges between 297.9 ton and 1909 ton with 

mean 1068.71 ton and standard deviation 542.17 ton. Weir ranges between 7 thousand 

acres and 35 thousand acres with mean 25.67 thousand acres and with standard 

deviation 8.47 thousand acres. Pesticides ranges between 111 gallon and 910543 

gallons with mean 78570.67 gallons and with standard deviation 210229.42 gallons 

and quality seeds ranges between 1192 baskets and 60641 baskets with mean 8894.05 

baskets and with standard deviation 13461 baskets. 



The descriptive Statistics for production (PROD), pesticides (PESTI) and 

substitution sown (SUBSOWN) of Wheat in Myanmar is presented in Table (4.2). 

Table (4.2) 

Descriptive Statistics for Wheat in Myanmar 

Variable Mean Std.Dev Min Max 

PROD 144.08 34.66 90.7 182.9 

PESTI 290.00 230.98 22 894 

SUBSOWN 7105.90 3227.94 665 13814 

          Source: Appendix (B12) 

In Table (4.2), wheat production ranges between 90.7 ton and182.9 ton with 

mean 144.08 ton and standard deviation 34.66 ton. Pesticides ranges between 22 

gallons and 894 gallons with mean 290 gallons and with standard deviation 230.98 

gallons and substitution sown ranges between 665 thousand acres and 13814 thousand  

acres with mean 7105.9 thousand acres and with standard deviation  3227.94 thousand 

acres. 

The descriptive Statistics for production (PROD), pesticides (PESTI) and yield 

(YIE) for Rice in Myanmar is presented in Table (4.3).  

Table (4.3) 

Descriptive Statistics for Rice in Myanmar 

Variable Mean Std.Dev Min Max 

PROD 17311.47 7899.68 6636.76 32164 

SOWN 14567.92 2780.29 11530 20076 

YIE 56.88 15.78 28.5 78.91 

              Source: Appendix (B13) 

In Table (4.3), the rice production ranges between 6636.76 ton through 32164 

ton with mean equal 17311.47 ton and standard deviation 7899.68 ton and sown 

ranges between 11530 thousand acres through 20076 thousand acres with mean 

14567.92 thousand acres and with standard deviation equal 2780.29 thousand acres 

and yield ranges between 28.5 lb through 78.91 lb with mean 56.88 lb and with 

standard deviation 15.78 lb. 



The descriptive Statistics for production (PROD), sown (SN), harvested 

(HAR), irrigation (IRRI), loan (LA), quality seeds (QUALI) and pesticides (PESTI) 

for Sesame in Myanmar is represented as shown in Table (4.4).  

Table (4.4) 

 Descriptive Statistics for Sesame in Myanmar 

Variable Mean Std. Dev Min Max 

PROD 497.97 262.05 142.7 840 

SN 3499.77 396.58 2557 4052 

HAR 2976.20 723.63 1521 3863 

IRRI 210.76 49.71 147.76 335.49 

LA 7034.38 12645.55 59.72 58018.6 

QUALI 1283.77 1216.96 68 4464 

PESTI 64238.77 187153.36 111 928447 

            Source: Appendix (B14) 

In Table (4.4), the sesame production ranges between 840 ton and 142.7 ton 

with mean  497.97 ton and standard deviation 262.05 ton. Sown ranges between 2557 

acres and 4052 acres with mean 3499.77 acres and with standard deviation 396.58 

acres and harvested ranges between 1521 acres and 3863 acres with mean 2976.2 

acres and with standard deviation 723.63 acres. Irrigation ranges between 147.76 

acres and 335.49acres with mean 210.76 acres and with standard deviation 49.71 

acres and loan ranges between 59.72 kyats in thousand and 58018.6 kyats in thousand 

with mean 7034.38 kyats in thousand and with standard deviation 7034.38 kyats in 

thousand. Quality seeds range between 68 baskets and 4464 baskets with mean 

1283.77 baskets and with standard deviation 1216.96 baskets and pesticides ranges 

between 111 gallons and 928447 gallons with mean 64238.77 gallons and with 

standard deviation 187153.36 gallons. 

 

4.2 Detecting and Remedy of Linearity Assumption 

Based on the time series data of maize production, pesticides and quality seeds 

during the period of 1998 to 2018, the proposed multiple regression model of maize 



production in Myanmar on pesticides, weir and quality seeds are fitted. The dependent 

variable (Yi) is production (PROD) and the independent variables (Xij) are pesticides 

(PESTI), weir (WR) and quality seeds (QUALI).The regression equation results are 

shown in the following Table (4.5).  

Table (4.5) 

 Results for Original Data of Maize Production 

Variable Coefficient Std. 

Error 

t-

Statistic 

Sig. TOL VIF Cov(Xij,ui) 

Constant 

PESTI 

WR 

QUALI 

110.466 

0.001 

37.746 

-0.009 

263.236 

0.000 

8.937 

0.005 

0.420 

2.849 

4.223 

-1.582 

0.680 

0.011** 

0.001*** 

0.132 

 

0.914 

0.626 

0.657 

 

1.094 

1.597 

1.523 

 

0.07 

0.00 

-0.01 

R-squared 

Adjusted R-squared 

Std. Error of the Estimate 

Durbin-Watson 

0.793 

0.756 

267.857 

0.499 

E (ui) 

F-statistic 

Prob (F-statistic) 

0.00 

21.646 

0.00*** 

*** denotes significant at 1% level and ** denotes significant at 5% level  

Source: Appendix (A1) 

The estimated regression equation for maize production is 

PROD = 110.466 + 0.001PESTI + 37.746WR – 0.009QUALI           (4.1) 

From the estimated regression equation (4.1) for maize production, it is found 

that maize production is positively related to pesticides and weir, and negatively 

related to quality seeds. It can be that holding the quality seeds and weir of maize is 

held constant; a 1 gallon increase in pesticides led on the average to about 0.001 ton 

increase in production. Similarly, holding the quality seeds and pesticides is held 

constant, a 1 basket increase in weir led on the average to about 37.746 thousand 

acreages increase in production and holding the pesticides and weir is held constant, a 

1 basket increase in quality seeds led on the average to about 0.009 thousand acreages 

decrease in production. 



The pesticides (2.849) is statistically significant at 5% level and weir (4.223) 

is also statistically significant at 1% level but quality seeds is not significant. The 

multiple linear regression’s F-test (21.646) is highly significant at 1% level. Adjusted 

R-square is 0.756 and the R squared is 0.793 which means that 79.3% of variation in 

maize production is explained by pesticides, weir and quality seeds and the remaining 

percentage 20.7% due to other factors that are not included in the model. The standard 

error of estimate (267.857) is very large.  

The value of Durbin-Watson statistic DW = 0.499 is less than the table value 

of the lower limit for Durbin-Watson statistic dL = 1.026 at 95% confidence limit with 

the number of parameter 3. Therefore, there is autocorrelation. The mean of error is 

zero and the covariance values of error term and independent variables are 0.07, 0 and 

-0.01 which can be assumed to zero. Moreover, since VIF values of pesticides, weir 

and quality seeds are 1.094, 1.597 and 1.523 which is not greater than 5 and total VIF 

is not greater than 10 and tolerance values are 0.914, 0.626 and 0.657 which are 

closely to 1. Hence, there is no multicollinearity. In this section, since quality seeds is 

not significant and standard error is very large, assume that linearity assumption 

between production and pesticides, weir and quality seeds is violated. Then, detect the 

violation of the linearity assumption. 

 

4.2.1 Detection of Linearity Assumption 

One of the assumptions of classical linear regression analysis is that the 

regression model is linear in the parameters. The relationship between the dependent 

and each independent variable need to be linear. The scatter plots between the 

dependent and each independent variable and residual plot showing the standardized 

residuals versus the predicted values are used to diagnosis linearity assumption in the 

following Figures (4.1) and (4.2). 



 

(a) (b) 

 

(c) 

Figure (4.1) Scatter Plots for Original Data 

                        Source: Appendix (A1) 



 

Figure (4.2) Residual Plot of Original Data 

      Source: Appendix (A1) 

Linear relationship between production and pesticides, between production 

and weir between production and quality seeds are indistinct in Figures (4.1) (a), (b) 

and (c) and Figure (4.2) can be seen as the curve pattern. Therefore, these data can be 

concluded that violated the linearity assumption. 

 

4.2.2 Remedy of Linearity Assumption 

The variables are needed to transform to remedy the violation of linearity 

assumption. So, the variables are transformed by taking the double-log (log - log). 

The scatter plots and residual plot for transformation data are described the Figures 

(4.3) and (4.4). 

 

(a) (b) 

 



 

             (c) 

Figure (4.3) Scatter Plots for Transformation Data 

                        Source: Appendix (A1) 

 
Figure (4.4) Residual Plot of Transformation Data 

                       Source: Appendix (A1) 

Linear relationship between production and pesticides, between production 

and weir, between production and quality seeds are obvious in Figures (4.3) (a), (b) 

and (c). In Figure (4.4), residual plot showing the standardized residuals versus the 

predicted values has no pattern. The double log model satisfies the linearity 

assumption between dependent and independent variables and the regression model is 

linear in the parameters.  

 

4.2.3 Fitted Regression Model for Maize Production 

 Table (4.6) shows the results of transformation model by taking the double log 

variables of Maize production as follows. 

 

 

 



Table (4.6) 

 Results for Transforming Data of Maize Production 

Variable Coefficient Std. 

Error 

t-

Statistic 

Sig. TOL VIF 

Constant 

Ln(PESTI) 

Ln(WR) 

Ln(QUALI) 

6.000 

0.079 

-0.201 

0.579 

0.843 

0.023 

0.058 

0.134 

7.120 

3.340 

-3.494 

4.304 

0.000*** 

0.003*** 

0.003*** 

0.000*** 

 

0.570 

0.422 

0.450 

 

1.755 

2.369 

2.220 

R-squared 

Adjusted R-squared 

Std. Error of the Estimate 

Durbin-Watson 

0.923 

0.910 

0.188 

1.272 

F-statistic 

Prob (F-statistic) 

68.378 

0.000*** 

*** denotes significant at 1% level 

Source: Appendix (A1) 

The best fitted regression model for maize production is 

Ln (PROD) = 6 + 0.079Ln (PESTI) – 0.201Ln (WR) + 0.579Ln (QUALI) 

          (4.2) 

The pesticides (2.849), weir (4.223) and quality seeds are statistically 

significant at 1% level. The multiple linear regression’s F-test (68.378) is highly 

significant at 1% level. Adjusted R-square is 0.923 and the R squared is 0.910 which 

means that 91% of variation in maize production is explained by pesticides, weir and 

quality seeds and the remaining percentage 9% due to other factors that are not 

included in the model. The standard error of estimate (0.188) is small.  

The value of Durbin-Watson statistic DW = 1.272 exists between the table 

value of the lower limit dL = 1.026 and upper limit dU = 1.669 at 95 % confidence 

limit with the number of parameter 3. Therefore, there is no autocorrelation. 

Moreover, since VIF values of pesticides, weir and quality seeds 1.755, 2.369 and 

2.220 which is not greater than 5 and total VIF is not greater than 10 .So, there is no 

multicollinearity. This model satisfies the linear in parameter. 

 



4.3 Detecting and Remedy of Normality Assumption between the 

Disturbances  

Based on the time series data of wheat production, pesticides and substitution 

sown during the period of 1998 to 2018, the proposed multiple regression model of 

wheat production in Myanmar on pesticides and substitution sown are fitted. The 

regression equation results are shown the following Table (4.9). The dependent 

variable (Yi) is production (PROD) and the independent variables (Xij) are pesticides 

(PESTI) and substitution sown (SUBSOWN). The regression equation results are 

shown in the following Table (4.7).  

Table (4.7)  

Results for Original Data of Wheat Production 

Variable Coefficient Std. 

Error 

t-

Statistic 

Sig. TOL VIF Cov(xij,ui) 

Constant 

PESTI 

SUBSOWN  

106.430 

0.031 

0.004 

18.199 

0.032 

0.002 

5.848 

0.978 

1.747 

0.000*** 

0.341 

0.098* 

 

0.944 

0.944 

 

1.059 

1.059 

 

-0.0001 

-0.002 

R-squared 

Adjusted R-squared 

Std. Error of the Estimate 

Durbin-Watson 

0.221 

0.134 

32.246 

0.828 

E (ui) 

F-statistic 

Prob (F-statistic) 

0.00 

2.55 

0.106 

*** denotes significant at 1% level and * denotes significant at 10% level 

Source: Appendix (A2) 

The estimated regression equation for wheat production is 

PROD = 106.430 + 0.031PESTI – 0.004SUBSOWN.            (4.3) 

From the estimated regression equation for wheat production, it is found that 

wheat production is positively related to pesticides and substitution sown. It was 

found that holding the substitution sown is constant; a 1 gallon increase in pesticides 

led on the average to about 0.031 ton increase in production. Similarly, holding the 

pesticides is constant; a 1 acreage increase in yield led on the average to about 0.004 

thousand acreages increase in production. 



The substitution sown (1.747) is statistically significant at 10% level but 

pesticides (0.978) is not significant. The F-test of multiple linear regression (2.55) is 

highly significant at 1% level. Adjusted R-square is 0.134 and the R squared is 0.221 

which means that 22.1% of variation in wheat production is explained by pesticides, 

substitution sown and the remaining percentage 77.9% due to other factors that are 

not included in the model. The standard error of estimate is 32.246.  

The value of Durbin-Watson statistic DW = 0.828 is less than the table value 

of the lower limit for Durbin-Watson statistic dL = 1.125 at 95% confidence limit with 

the number of parameter 2. Therefore, there is autocorrelation. The mean of error is 

zero and the covariance values of error term and independent variables are -0.0001 

and -0.002 which can be assumed to zero. Moreover, since both VIF values of 

pesticides an substitution sown are 1.059 which is not greater than 5 and total VIF is 

not greater than 10 and tolerance values are 0.944 which are closely to 1. So, there is 

no multicollinearity. In this section, normality assumption between the disturbances is 

detected. 

 

4.3.1 Detection of Normality of Disturbance Terms 

One of the basic assumptions is that the stochastic disturbance terms are 

normally distributed. The violation of normality of the disturbance terms are detected 

by using Kolmogorov-Smirnov test and box plot. The Kolmogorov-Smirnov test and 

box plot are shown in Table (4.8) and Figure (4.5). 

Table (4.8) 

 Kolmogorov-Smirnov Test for Original Data 

 Statistic Degree of freedom  Sig. 

Standardized Residual 0.202 21 0.026** 

        ** denote significant at 5% level. 

    Source: Appendix (A2) 

 



 
Figure (4.5): Box Plot of Standardized Residual for Original Data 

           Source: Appendix (A2) 

In Table (4.8) based on the Kolmogrov-Smirnov test, the computed value of 

Kolmogrov-Smirnov test for original data is 0.202. Since the p-value 0.026 is less 

than alpha value (α) 0.05, reject the null hypothesis that the stochastic disturbance 

terms are normally distributed. In Figure (4.5), box plot is skewed. Therefore, 

normality of the stochastic disturbance terms cannot be assumed in these data. 

 

4.3.2 Remedy Violation of Normality of the Disturbance Terms 

The redefining variables are needed to remedy the violation of normality of 

the disturbances. The variables are transformed by taking reflect and square root. The 

Kolmogrov-Smirnov test and histogram are described as the following Table (4.9) and 

Figure (4.6). 

Table (4.9) 

Kolmogorov-Smirnov Test for Redefining Variables 

 Statistic Degree of freedom  Sig. 

Standardized Residual 0.132 21 0.200 

      Source: Appendix (A2) 

 



 
Figure (4.6): Box Plot of Standardized Residual for Redefining Data 

         Source: Appendix (A2) 

In Table (4.9) based on the Kolmogrov-Smirnov test, the computed 

significance level for transforming data 0.2 is greater than alpha value (α) 0.05 and in 

Figure (4.6), box plot  is symmetric. Therefore, normality of the standardized residual 

can be assumed in these data. 

 

4.3.3 Fitted Regression Model for Wheat Production 

The variables are transformed by taking reflect and square root. Table (4.10) 

shows the results of these transformation variables for Wheat production as follows. 

Table (4.10) 

Results for Transforming Data of Wheat Production 

Variable Coefficient Std. Error t-Statistic Sig. TOL VIF 

Constant 

New (PESTI) 

New (SUBSOWN) 

0.339 

0.041 

0.054 

2.709 

0.090 

0.025 

0.125 

0.455 

2.132 

0.902 

0.655 

0.047** 

 

0.966 

0.966 

 

1.035 

1.035 

R-squared 

Adjusted R-squared 

Std. Error of the Estimate 

Durbin-Watson 

0.227 

0.141 

2.850 

0.760 

F-statistic 

Prob (F-statistic) 

2.642 

0.099* 

*denote significant at 5% level and *denote significant at 10% level 

Source: Appendix (A2) 



New (PROD) = Sqrt (K-PROD) 

New (PESTI) = Sqrt (K-PESTI) 

New (SUBSOWN) = Sqrt (K-SUBSOWN) 

K = reflect = 1+ max (respective value) 

The fitted regression model for wheat production is  

New (PROD) = 0.041 New (PESTI) + 0.054 New (SUBSOWN)          (4.4) 

 The F-test of multiple linear regression (2.642) is significant at 10% level. 

Adjusted R-square is 0.141 and the R squared is 0.227 which means that 22.7% of 

variation in wheat production is explained by pesticides, substitution sown and the 

remaining percentage 77.3% due to other factors that are not included in the model. 

The standard error of estimate decrease from 32.246 to 2.850.  

The value of Durbin-Watson statistic DW = 0.760 is less than the table value 

of the lower limit for Durbin-Watson statistic dL = 1.125 at 95% confidence limit with 

the number of parameter 2. Therefore, there is autocorrelation. The mean of error is 

zero. Moreover, since both VIF values of pesticides an substitution sown are 1.035 

which is not greater than 5 and total VIF is not greater than 10 and tolerance values 

are 0.966 which are closely to 1. Hence, there is no multicollinearity. In this section, 

normality assumption between the disturbances is detected. 

 

4.4 Detection and Remedy of Homoscedasticity Assumption 

Based on the time series data of rice production, sown acreage and yield per 

harvested acre during the period of 1966 to 2018, the proposed multiple regression 

model of rice production in Myanmar on the sown acreage and yield per harvested are 

fitted. The regression equation results are shown the following Table (4.11).  

 

 

 

 

 

 

 

 

 

 



Table (4.11)  

Results for Original Data of Rice Production 

Variable Coefficient Std. Error t-Statistic Sig. TOL VIF 

Constant 

SN 

YIE 

-20282.5 

1.662 

235.276 

430.34 

0.046 

8.169 

-47.13 

35.846 

28.801 

0.00*** 

0.00*** 

0.00*** 

 

0.383 

0.383 

 

2.613 

2.613 

R-squared 

Adjusted R-squared 

Std. Error of the Estimate 

Durbin-Waston 

0.995 

0.995 

575.07 

0.920 

E (ui) 

F-statistic 

Prob (F-statistic) 

0.000 

4881.215 

0.000*** 

*** denote significant at 1% level. 

Source: Appendix (A3) 

The estimated regression equation for rice production is 

PROD = -20282.5 + 1.662SN + 235.276YIE.             (4.5) 

From the estimated regression equation for rice production, it is found that rice 

production is positively related to sown and yield. It can be found that holding the 

yield of rice is constant; a 1 thousand acres increase in sown led on the average to 

about 1.662 ton increase in production. Similarly, holding the sown of rice is constant, 

a 1 thousand acres increase in yield led on the average to about 235.276 thousand 

acreages increase in production. 

The sown (35.846) and yield (28.801) is statistically significant at 1% level. 

The F-test of multiple linear regression (2.55) is highly significant at 1% level. 

Adjusted R-square is 0.995 and the R squared is 0.995 which means that 99.5% of 

variation in rice production is explained by sown and yield and the remaining 

percentage 0.5% due to other factors that are not included in the model. The standard 

error of estimate is 575.07. The value of Durbin-Watson statistic DW = 0.920 is less 

than the table value of the lower limit for Durbin-Watson statistic dL = 1.490 at 95% 

confidence limit with the number of parameter 3. Therefore, there is autocorrelation. 

The mean of error is zero. Moreover, since both VIF values of sown and yield are 

2.613 which is not greater than 5 and total VIF is not greater than 10. Hence, there is 

no multicollinearity. In this section, homoscedasticity assumption are diagnosed. 



4.4.1 Detection of Homoscedasticity Assumption 

One of the assumptions of classical linear regression model is that the variance 

of the disturbance term is constant or homoscedasticity, that is, there is no 

heteroscedasticity.is In this section, White’s General Heteroscedasticity test are used 

to diagnosis the homoscedasticity assumption. The following Table (4.12) shows the 

White’s General Heteroscedasticity test result for the original data. 

Table (4.12) 

White’s General Heteroscedasticity Test Result for Original Data 

Variable Coefficient Std. Error t-statistic Sig. 

Constant 

SN 

YIE 

SN^2 

YIE^2 

SN*YIE 

6.943 

0.000 

-0.220 

2.552E-008 

0.005 

-1.754 

12.865 

0.001 

0.255 

0.000 

0.004 

0.000 

0.540 

-0.127 

-0.864 

0.309 

1.361 

-0.422 

0.592 

0.899 

0.392 

0.759 

0.180 

0.675 

R Squared 

Chi Square 

Obs*R-squared 

0.237 

11.07 

12.561 

Adjusted R Squared 

Probability 

Probability 

0.156 

0.05 

0.05 

Source: Appendix (A3) 

In this problem, the number of observations is 53 and number of parameters is 

5. The R-squared equals 0.237 which means that 23.7% of variation in rice production 

is explained by sown and yield. Since observation * R squared (12.561) is greater than 

the Chi squared distribution with 5 degree of freedom at 5% level (11.07), there reject 

the null hypothesis that the disturbance terms have equal variances. Hence, 

heteroscedasticity exists. 

 

4.4.2 Remedy of Homoscedasticity Assumption  

The variables which make the violation of the homoscedasticity assumption 

are transformed to the double-log equation (log - log model) to remedy the 

heteroscedasticity. The redefining results are shown in following Table (4.13). 



Table (4.13) 

 Redefining Results for Rice Production 

Variable Coefficient Std. Error t-statistic Sig. TOL VIF 

Constant 

Ln (SN) 

Ln (YIE) 

-4.923 

1.114 

0.978 

0.306 

0.038 

0.022 

-16.133 

29.375 

44.258 

0.000*** 

0.000*** 

0.000*** 

 

0.480 

0.480 

 

2.085 

2.085 

R-squared 

Adjusted R-squared 

Std. Error of the Estimate 

Durbin-Waston 

0.995 

0.995 

0.034 

1.472 

F-statistic 

Sig. (F-statistic) 

4896.133 

0.000*** 

***denote significant at 1% level. 

Source: Appendix (A3) 

Table (4.13) shows redefining result by redefining the variables which make 

the violation of homoscedasticity such that production, sown and yield are 

transformed to double - log equation.  

The ln of sown (29.375) and ln of yield (44.258) are statistically significant at 

1% level. The F-test of multiple linear regression (4896.133) is highly significant at 

1% level. Adjusted R-square is 0.995 and the R squared is 0.995 which means that 

99.5% of variation in rice production is explained by sown and yield and the 

remaining percentage 0.5% due to other factors that are not included in the model. 

The standard error of estimate is 575.07. The Durbin-Watson d statistic is 1.472. In 

addition, White’s General Heteroscedasticity test is used to diagnose the problem of 

heteroscedasticity for redefining data. The following Table (4.14) shows the White’s 

General Heteroscedasticity result for redefining data.  

Table (4.14) 

 White’s General Heteroscedasticity Test Results for Redefining Data 

Chi Square 11.07 Probability 0.05 

Obs*R-squared 8.162 Probability 0.05 

R Squared 0.154 Adjusted R Squared 0.102 

         Source: Appendix (A3) 



The R-squared equals 0.154 which means that 15.4% of variation in redefining 

rice production is explained by redefining sown and yield. Since Obs * R-squared 

(8.162) is greater than the Chi squared (11.07) with 5 degree of freedom, do not 

evidence to reject the null hypothesis that the error term have equal variances. Hence, 

heteroscedasticity does not exist. Thus, the redefining method is successfully solved 

the violation in constant variance in the original data.  

The best fitted multiple regression model for rice production is 

Ln (PROD) = -4.923+1.114 Ln (SN) +0.978 Ln (YIE)          (4.5) 

 

4.5 Detecting and Remedy of the Assumptions  

(Micronumerosity, Multicollinearity, Nature of Independent Variables and 

Autocorrelation) 

Based on the time series data of sesame production, sown acreage, and 

harvested, irrigation, loan, quality seeds and pesticides during the period of 1989 to 

2018, the proposed multiple regression model of sesame production in Myanmar on 

the sown acreage, and yield per harvested acre, irrigation, loan, quality seeds and 

pesticides are fitted. The regression equation results are shown the following Table 

(4.15).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table (4.15) 

Results for Original Data of Sesame Production 

Variable Coefficient Std. Error t-Statistic Sig. TOL VIF Cov(ui,Xij) 

Constant 

SN 

HAR 

IRRI 

LA 

QUALI 

PESTI 

-580.23 

0.098 

0.234 

-0.005 

0.008 

0.001 

0.000 

299.987 

0.143 

0.076 

0.503 

0.004 

0.018 

0.000 

-1.934 

0.687 

3.105 

-0.011 

2.028 

0.067 

-1.264 

0.065* 

0.499 

0.005*** 

0.991 

0.054* 

0.947 

0.219 

 

0.114 

0.123 

0.585 

0.142 

0.768 

0.170 

 

8.758 

8.161 

1.709 

7.030 

1.301 

5.885 

 

0.000 

-0.0002 

0.0000 

-0.009 

-0.0011 

0.127 

R-squared 

Adjusted R-squared 

Std. Error of the 

Estimate 

Durbin-Watson 

0.877 

0.846 

102.99 

 

0.900 

E (ui) 

F-statistic 

Prob (F-statistic) 

0.000 

27.453 

0.000*** 

 

**** denote significant at 1% level and * denote significant at 10% level. 

Source: Appendix (A4)  

The estimated regression equation for sesame production is 

PROD = -580.23+0.098SN+0.234HAR-0.005IRRI+0.008LA+0.001QUALI + 

 0.000PESTI                          (4.7) 

From the estimated regression equation for sesame production, it is found that 

sesame production is positively related to sown, harvested, loan, quality seeds and 

pesticides and is negatively related to irrigation. It is found that holding the harvested, 

irrigation, loan, quality seeds and pesticides are constant, a 1 thousand acre increase in 

sown led on the average to about 0.098 ton increase in production and holding the 

sown, irrigation, loan, quality seeds and pesticides are constant, a 1 thousand acre 

increase in harvested led on the average to about 0.234 thousand acreage increase in 

production. Holding the sown, harvested, loan, quality seeds and pesticides are 



constant, a 1 thousand acre increase in irrigation led on the average to about 0.005 

thousand acreage decrease in production. Holding the sown, harvested, irrigation, 

quality seeds and pesticides are constant, a 1 kyat millions increase in loan led on the 

average to about 0.008 thousand acreage increase in production. Holding the sown, 

harvested, irrigation, loan and pesticides are constant, a 1 basket increase in quality 

seeds led on the average to about 0.001 thousand acreages increase in production and 

since the coefficient of pesticides is 0, any gallon increase in pesticides led about 

580.23 thousand acreages decrease in production holding the other variables are 

constant. 

The harvested (3.105) is statistically significant at 1% level and loan (2.028) is 

also statistically significant at 10% level but other variables (sown, irrigation, quality 

seeds pesticides) are not significant. The F-test of multiple linear regression (27.453) 

is highly significant at 1% level. Adjusted R-square is0.846 and the R squared is 

0.877 which means that 87.7% of variation in sesame production is explained sown, 

harvested, irrigation, loan, quality seeds and pesticides and the remaining percentage 

12.3% due to other factors that are not included in the model. The standard error of 

estimate (102.99) is very large.  

The Durbin-Watson d is 0.499 which is less than lower limit (1.026) at the 

number of observation (21) and parameter (3). The mean of error is zero and the 

covariance values of error term and independent variables are 0.000, -0.0002, 0.0000, 

-0.009, -0.0011 and 0.127 which can be assumed to zero. Moreover, since VIF values 

of sown, harvested, irrigation, loan, quality seeds and pesticides are 8.758, 8.161, 

1.709, 7.030, 1.301 and 5.885 which is greater than 5 and total VIF is not greater than 

10 and tolerance values are 0.114, 0.123, 0.585, 0.142, 0.768 and 0.170 which are 

closely to 0.  

 

4.5.1 Detection Micronumerosity Assumption 

 One of the assumptions of classical linear regression analysis is that there is no 

micronumerosity. The problem of micronumerosity simply means small sample size. 

In this problem, a regression model with Ordinary Least Squares (OLS) method 

cannot be estimated when sesame data set for 5 years (2014-2017) with six 

parameters are estimated. See Appendix (B1-B4). Sesame data set for 6 years (2013-

2017) with six parameters are estimated. See Appendix (B5-B10). 

 



4.5.2 Remedy Micronumerosity Assumption 

If the micronumerosity assumption is violated, a regression model with 

Ordinary Least Squares (OLS) method cannot be estimated and a precise (unbiased) 

estimate with relatively least standard errors cannot be obtained. This problem is 

remedied by adding the observations as shown the following Table (4.16).  

Table (4.16)  

Results for Sesame Production Adding the Observations 

Variable Coefficient Std. Error t-Statistic Sig. 

Constant 

SN 

HAR 

IRRI 

LA 

QUALI 

PESTI 

-580.23 

0.098 

0.234 

-0.005 

0.008 

0.001 

0.000 

299.987 

0.143 

0.076 

0.503 

0.004 

0.018 

0.000 

-1.934 

0.687 

3.105 

-0.011 

2.028 

0.067 

-1.264 

0.065* 

0.499 

0.005*** 

0.991 

0.054* 

0.947 

0.219 

R-squared 

Adjusted R-squared 

0.877 

0.846 

F-statistic 

Prob (F-statistic) 

27.453 

0.000*** 

    **** denote significant at 1% level and * denote significant at 10% level. 

    Source: Appendix (A4) 

In Table (4.16), although the F-statistic (27.453) is significant at 1% level of 

significance, most of the variables (sown, irrigation, quality seeds and pesticides) are 

insignificant at 10% level of significance. Hence, other assumptions are needed to 

detect and remedy. 

 

4.5.3 Detection of Multicollinearity Assumption 

One of the assumptions of classical linear regression analysis is that there is no 

exact multicollinearity between the independent variables. To test the assumption of 

multicollinearity, Variance Inflation Factor (VIF) and tolerance (TOL) can be used, 

especially in regression analyses. The sesame production data set from the remedy 



micronumerosity assumption are used to detect the multicollinearity and the results 

are shown in following Table (4.17). 

Table (4.17) 

Results for Original Data by TOL and VIF  

Variable Coefficient Std. Error t-Statistic Sig. TOL VIF 

Constant 

SN 

HAR 

IRRI 

LA 

QUALI 

PESTI 

-580.23 

0.098 

0.234 

-0.005 

0.008 

0.001 

0.000 

299.987 

0.143 

0.076 

0.503 

0.004 

0.018 

0.000 

-1.934 

0.687 

3.105 

-0.011 

2.028 

0.067 

-1.264 

0.065* 

0.499 

0.005*** 

0.991 

0.054* 

0.947 

0.219 

 

0.114 

0.123 

0.585 

0.142 

0.768 

0.170 

 

8.758 

8.161 

1.709 

7.030 

1.301 

5.885 

R-squared 

Adjusted R-squared 

0.877 

0.846 

F-statistic 

Prob (F-statistic) 

27.453 

0.000*** 

*** denote significant at 1% level and * denote significant at 10% level. 

Source: SPSS Output 

From Table (4.17), the following are noticeable. The F-statistic is highly 

significant (P-value 0.000), implying the variables chosen and value of valid 

independent variables and most of the regression coefficients are insignificant at 5% 

level of significance. The value of R
2
 is 0.877.  Variance inflation factor (VIF) and 

tolerance (TOL) are the measure of multicollinearity.  The VIF values of each 

variable are 8.758, 8.161, 1.709, 7.030, 1.301 and 5.885 and the VIF value of sown, 

harvested, quality seeds and pesticides are greater than 5. The total VIF value is 

32.844 that mean greater than 10.  TOL values are 0.114, 0.123, 0.585, 0.142, 0.768 

and 0.170 and TOL values are closely to zero.  Therefore, these VIF and TOL values 

are not acceptable.  

If in Pearson Correlation Matrix, any of the dependent variables included have 

a high correlation with any other dependent variable or the value of correlation is 



significant, one of these independent variables are removed. The values of correlation 

among the independent variables are shown in below Table (4.18). 

Table (4.18) 

 Correlation Matrix 

 SOWN HAR IRRI LOAN QUALI PESTI 

SN Pearson 

Correlation 

1 .911
**

 .258 .521
**

 -.396
*
 .302 

Sig. (2-tailed)  .000 .168 .003 .030 .105 

 

HAR Pearson 

Correlation 

.911
**

 1 .076 .537
**

 -.323 .335 

Sig. (2-tailed) .000  .691 .002 .082 .070 

 

IRRI Pearson 

Correlation 

.258 .076 1 .406
*
 -.081 .438

*
 

Sig. (2-tailed) .168 .691  .026 .669 .015 

 

LOAN Pearson 

Correlation 

.521
**

 .537
**

 .406
*
 1 .019 .885

**
 

Sig. (2-tailed) .003 .002 .026  .921 .000 

 

QUALI Pearson 

Correlation 

-.396
*
 -.323 -.081 .019 1 .105 

Sig. (2-tailed) .030 .082 .669 .921  .581 

 

PESTI Pearson 

Correlation 

.302 .335 .438
*
 .885

**
 .105 1 

Sig. (2-tailed) .105 .070 .015 .000 .581  

 

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 

Source: Appendix (A4) 

In Table (4.18), the correlation between sown and harvested, sown and loan, 

sown and quality seeds are significant and the correlation between loan and harvested, 

loan and irrigation, loan and pesticides are significant. The correlation between 



pesticides and irrigation is also significant. Therefore, sown, loan and pesticides are 

highly correlated with other independent variables. 

 

4.5.4 Remedy of Multicollinearity Assumption 

In this study, sown, loan and pesticides are needed to remove to remedy the 

violation of multicollinearity assumption. When sown, loan and pesticides are 

removed, multicollinearity assumption is again detected by the remained independent 

variables. The results are given in Table (4.19) as follows. 

Table (4.19) 

Results for Removing the Variables by TOL and VIF  

Variable Coefficient Std. Error t-Statistic Sig. TOL VIF 

Constant 

HAR 

IRRI 

QUALI 

-587.109 

0.333 

0.420 

0.005 

129.062 

0.029 

0.407 

0.018 

-4.549 

11.286 

1.032 

0.304 

0.000*** 

0.000*** 

0.311 

0.764 

 

0.893 

0.991 

0.893 

 

1.119 

1.009 

1.120 

R-squared 

Adjusted R-squared 

0.846 

0.829 

F-statistic 

Prob (F-statistic) 

47.699 

0.000*** 

*** denote significant at 1% level. 

Source: Appendix (A4) 

According to Table (4.19), the VIF values of each variable are 1.119, 1.009 

and 1.120 and the total VIF value is 3.248 which is less than 10 and TOL values are 

0.893, 0.991 and 0.893 which are closely to one. Therefore, this study gives an 

acceptable level of collinearity and assumes that there is no mutlicollinearity. 

4.5.5 Detection of the Nature of Independent Variables Assumption 

One of the assumptions of classical linear regression analysis is the nature of 

independent variables. According to the result of VIF from Table (4.19), there is no 

evidence of significant problem in multicollinearity. Next step is to check whether 

violate the nature of independent variables assumption. In the nature of independent 

variables, there has two types of outliers and they are outliers of the independent 



variables and influence observations. The outliers of the independent variables are 

observed with each box plot as follows Figure (4.7). 

 
(a) (b) 

 

 
                                    (c) 

Figure (4.7) Box Plots of Independent Variables for Original Data 

          Source: Appendix (A4) 

According to Figure (4.5), there have no outliers in harvested and irrigation 

but have the outliers in quality seeds. The quality seeds has the outliers in the case 

number 8 and 9. The influence observations are recognized by using Cook’s distance 

as the following table. 

Table (4.20) 

Cook’s Distance for Original Data 

Minimum Maximum Mean Standard Deviation 

0 0.832 0.053 0.151 

        Source: Appendix (A4) 



In Table (4.20), the maximum Cook’s Distance is 0.832 and the standard level 

based on the 50
th

 percentile of the F distribution with 4 and 30 degree of freedom is 

0.809. The maximum value of Cook’s Distance is greater than the 50
th

 percentile of 

the F distribution. Therefore, there has influence observation in these data. To show 

the influence observation, a scree plot of the Cook’s distance for original data is 

shown in Figure (4.8). 

 
Figure (4.8)  Scree plot of Cook’s Distance for Original Data 

   Source: Appendix (A4) 

According to Figure (4.8), the scree plot of the Cook’s distance suggests that 

one observation which case number 11 is comparatively more influential than most 

others and could be subject to sensitivity analysis. 

 

4.5.6 Remedy of the Nature of Independent Variables 

The quality seeds has the outliers in the case number 8 and 9 and the case 

number 11 is the influence observation. If the cross sectional data are used, these case 

number from the data cut off to detect the outlier. But since the panel data or time 

series data are used in this study, it is not possible to cut because of the gap of the 

time lag. In panel data or time series data, if the data has few outliers, these outlier can 

be neglected and if more, the data are needed to transform. Hence, the variables are 

transformed by taking the double-log in this subsection. The outliers of the logarithm 

of independent variables are observed with each box plot as follows in Figure (4.8). 



 
(a) (b) 

 
(c) 

Figure (4.9) Box Plots of Independent Variables for Transformation Data 

    Source: Appendix (A4) 

According to Figure (4.9), there have no outliers in the logarithm of 

independent variables. The influence observations are recognized by using Cook’s 

distance as the following table.  

Table (4.21) 

Cook’s Distance for Transformation Data 

Minimum Maximum Mean Standard Deviation 

0 1.631 .083 0.297 

      Source: Appendix (A4) 

In Table (4.23), the maximum Cook’s Distance is 1.631 and the standard level 

based on the 50
th

 percentile of the F distribution with 4 and 30 degree of freedom is 

0.809. The maximum value of Cook’s Distance is greater than the 50
th

 percentile of 

the F distribution. Therefore, there has influence observation in these transformation 



data. To show the influence observation, a scree plot of the Cook’s distance for 

transformation data is shown in Figure (4.10). 

 

Figure (4.10) Scree plot of Cook’s distance for Transformation Data 

        Source: Appendix (A4) 

According to Figure (4.10), the scree plot of the Cook’s distance suggests that 

one observation which case number 11 is comparatively more influential than most 

others and could be subject to sensitivity analysis. There is no outliers in the 

independent variables and only one influence observation remain by taking double 

log. Hence, one influence observation is neglected.  

 

4.5.7 Detection of Autocorrelation between the Disturbances Assumption 

One of the assumptions of classical linear regression analysis is that there is no 

autocorrelation or serial correlation between the disturbances. The Durbin-Watson 

result is shown to detect the autocorrelation between the disturbances in below Table 

(4.22) and Figure (4.11). 

 

 

 

 

 

 

 



 Table (4.22) 

Durbin-Watson Result for Double Log Equation 

Variable Coefficient Std. Error t-Statistic Sig. TOL VIF 

Constant 

Ln (HAR) 

Ln (IRRI) 

Ln (QUALI) 

-10.467 

1.906 

0.259 

-0.005 

1.920 

0.181 

0.216 

0.047 

-5.451 

10.550 

1.198 

-0.101 

0.000*** 

0.000*** 

0.242 

0.920 

 

0.949 

0.980 

0.935 

 

1.053 

1.021 

1.070 

R-squared 

Adjusted R-squared 

Durbin-Watson 

0.823 

0.803 

0.872 

F-statistic 

Prob (F-statistic) 

40.288 

0.000*** 

*** denote significant at 1% level 

Source: Appendix (A4) 

 

   

Reject H0  Zone of     Zone of  Reject H0 

evidence of   indecision Do not reject H0 indecision evidence 

positive     evidence of no    of negative 

autocorrelation   autocorrelation        autocorrelation

   

dL     dU  2 4-dU        4-dL 

  1.214  1.650   2.35      2.786 

Figure (4.11): Durbin-Watson Statistic for Double Log Equation 

  Source: Appendix (A4) 

In Table (4.22), the computed Durbin-Watson d statistic is 0.872. Since the 

number of observations is 30 and parameters is 3, there is dL=1.214 and dU =1.65 in 

these data. Since the computed d value is less than 1.214, there is evidence of positive 

first-order serial correlation. 

 



4.5.8 Remedy of Autocorrelation between the Disturbances 

Since ρ value can be estimated based on Durbin-Watson d statistic, the 

generalized difference equation is used to remedy the autocorrelation between the 

disturbances. The ρ value based on Durbin-Watson d statistic is 0.564. The analysis 

results for generalized difference equation are shown in Table (4.23) as follow. 

Table (4.23) 

 Durbin-Watson Result for Generalized Difference Equation 

Variable Coefficient Std. Error t-Statistic Sig. TOL VIF 

Constant 

New HAR 

New IRRI 

New QUALI 

0.038 

0.647 

0.037 

0.004 

0.024 

0.091 

0.089 

0.023 

1.583 

7.075 

0.411 

0.192 

0.125 

0.000*** 

0.685 

0.849 

 

0.791 

0.871 

0.898 

 

1.264 

1.148 

1.113 

R-squared 

Adjusted R-squared 

Std. Error of Estimate 

Durbin-Watson 

0.720 

0.688 

0.126 

2.605 

F-statistic 

Prob (F-statistic) 

22.293 

0.000*** 

 

Source: Appendix (A4) 

New Production = Ln (PROD) – ρ (Ln (PROD)) 

New HAR = Ln (HAR) – ρ  (Ln (HAR)) 

New IRRI = Ln (IRRI) – ρ  (Ln (IRRI)) 

New QUALI = Ln (QUALI) - ρ  (Ln (QUALI)) 

 = first order differences 

 

 

 

 

 

 

 

 



   

Reject H0  Zone of     Zone of  Reject H0 

evidence of   indecision Do not reject H0 indecision evidence 

positive     evidence of no    of negative 

autocorrelation   autocorrelation        autocorrelation

   

  dL     dU  2 4-dU        4-dL 

  1.214  1.650   2.35      2.786 

Figure (4.12): Durbin-Watson Statistic for Generalized Difference Equation 

  Source: Appendix (A4) 

In Table (4.23), the computed Durbin-Watson d statistic is 2.605. Hence, since 

the computed d value lies between the 4 - dU and 4 – dL, there is inconclusive 

evidence regarding the presence of positive first-order serial correlation.  

The final regression model for sesame production is 

New PROD = 0.038 + 0.647New HAR -0.037New IRRI + 0.004New LA (4.8) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER V 

CONCLUSION 

Multiple regression examines the relationship between a single outcome 

measure and several predictor or independent variables. The correct use of the 

multiple regression model requires that several critical assumptions can be satisfied in 

order to apply the model and establish validity. Inferences and generalizations about 

the theory are only valid if the assumptions in an analysis have been tested and 

fulfilled.  

Before a complete regression analysis could be performed, the assumptions 

concerning the original data must be tested.  Ignoring the regression assumptions 

contribute to wrong validity estimates.  When the assumptions were not met, the 

results could be obtained in Type I or Type II errors, or over- or under-estimation of 

significance of effect size.  Hence, meaningful data analysis were necessary to test of 

the assumptions and the consequences of violations. 

In this study, the maize data, wheat data, rice data and sesame data of 

Myanmar were applied. These various data series were used to diagnosis the 

individual assumption and to remedy the violation assumption. 

Firstly, the maize data of Myanmar was used to examine the linearity 

assumption. When linearity assumption was exposed by using scatter plots and 

residual plot, assume that these data violated the linearity assumption. The scatter 

plots for double log transformation variables was closely to straight line and residual 

plot for double log transformation was no pattern. Hence, the double log transforming 

variables satisfied the linearity assumption. 

Secondly, wheat data of Myanmar was used to check the normality 

assumption of the disturbance terms. The normality of the disturbance terms was 

detected by using Kolmogorov-Smirnov test and boxplot. According to Kolmogorov-

Smirnov test, there was significant at 5% level, the disturbance terms of these data did 

not satisfy the normality assumption. Since box plot was skewed to the above, the 

variables were transformed by taking reflect and square root. The Kolmogrov-

Smirnov test for redefining variables were satisfied the normality assumption. 

Therefore, reflect and square root transforming variables were satisfied the violation 

of the normality assumption. 



Thirdly, rice data of Myanmar was used to analyses the homoscedasticity 

assumption. When the homoscedasticity assumption was tested with White’s test, the 

disturbance terms have equal variances, that is, heteroscedasticity exits. The 

redefining method was used to remedy the violation of homoscedasticity assumption. 

By redefining method, the variables were redefined to the double log and when the 

redefining variables were diagnosis by using White’s test, heteroscedasticity did not 

exist. Hence, the redefining method was successfully solved the violation in constant 

variance in original data. 

Fourthly, sesame data of Myanmar was used to explore the micronumerosity, 

multicollinearity, the nature of independent variables, and autocorrelation between the 

disturbances assumptions. In micronumerosity problem, a regression model with OLS 

method could not be estimated when sesame data set from 2014 to 2018 with six 

parameters (SOWN, HAR, IRRI, LOAN, QUALI AND PESTI) were used to 

estimate. Besides that when both observations and parameters were the same, a 

regression model with OLS method could not be estimated. This problem was 

remedied by adding the observations. When the observations were added from 1989 

to 2018, the variables were even insignificant at 10% level. Hence, other assumptions 

are needed to detect. 

Multicollinearity assumption was detected by using these adding data. The 

VIF and TOL was one of the detecting ways in multicollinearity assumption. The VIF 

values of SOWN, HAR, LOAN and PESTI were greater than 5 and total VIF was 

greater than 10. TOL values were closely to zero. Since these suffered the 

multicollinearity, Pearson correlation matrix were used to know strong correlation 

between independent variables. According to Pearson correlation, SOWN, LOAN and 

PESTI were strongly correlated with HAR, IRRI and QUALI. So, when SOWN, 

LOAN and PESTI were removed, the VIF and TOL values of HAR, IRRI and QUALI 

gave an acceptable level of multicollinearity. Because of that these data set could be 

assumed no multicollinearity. 

After that, the remaining independent variables were used to be diagnosis the 

nature of independent variables assumption. In the nature of independent variables, 

outliers of the independent variables and influence observations were observed with 

box plot and Cook’s distance. By using box plots, quality seeds had two outliers and 

the maximum value of Cook’s Distance was greater than the 50
th

 percentile of F 

distribution. There had influence observation in these data. To show the influence 



observation, a scree plot of Cook’s distance was used. By scree plot, one observation 

was more influential than most others. Although the outliers were cut off in cross 

section data, these were not possible to cut off because of the gap of the time lag. 

When the data were transformed by taking the double log, the independent variables 

had no outlier but there had one influence observation. These influence observation 

were neglected. 

And then, the double log transforming data were used for autocorrelation 

between the disturbances. When the autocorrelation of the disturbances was tested by 

Durbin-Watson test, the transforming data was positive first order serial correlation. 

Since ρ value could be estimated based on the Durbin-Watson d statistic, the 

generalized difference equation was used to remedy the autocorrelation. By using 

generalized difference equation, there was inconclusive evidence regarding the 

presence of negative first order serial correlation. 

In this thesis, the unnecessary variables were added in multicollinearity 

problem using sesame data. The presence of unnecessary variables in the regression 

model was caused the specification error of inclusion of unnecessary variables and 

autocorrelation was caused wrong function form. The violation of normality of the 

disturbances was one of the specification errors.  

To sum up, when the classical multiple linear regression analysis were used, 

the assumptions were needed to detect and when the assumptions were violated, the 

various remedial ways were used to satisfy the assumptions. If the remedial ways 

were used for the violation of the assumptions, the data type must be noticed. In cross 

sectional data, there were many ways to make the reducing but it was not possible in 

time series data or panel data. 

 

 

 

 

 

 



REFERENCES 
 

Andreea Halunga, C. D. (2011). Heteroscedasticity Robust Breusch-Pagan Test for 

Contemporaneous Correlation in Dynamic Panel Data Models. 

Antonakis, J. &. (2011). Looking for Validity or Testing It? The Perils of Stepwise 

Regression, Extreme-Score Analysis,Heteroscedasticity, and Measurement 

Error. Pesonality and Individual Differences, pp. 409-415. 

Barbakh, M. M. (2012, June). A Study on the violation of Homoskedasticity 

Assumption in Linear Regressin Models. (A.-A. U.-G. Statistics, Ed.) 

Baser, O. (2007). Modeling Transformed Health Care Cost with Unknown 

Heteroscedasticity. 

Damodar N. Gujarati, D. C. (n.d.). Basic Economics (Fifth Edition ed.). 

Osborne, J.,& Wasters,E.(2002). Four Assumptions of Multiple Regression that 

Researchers should always test. Partical Assessment, Research & Evaluation. 

Guggenberger, D. W. (2011). Conditional Heteroskedasticity -Robust Confidence 

Interval for the Autoregressive Parameter. 

Hausman, N. W. (2009). Intrumental Variable Estimation with Heteroscedasticity and 

Many Instruments. 

Hayes, A. F. (2009). Using Heteroskedasticity-Consistent Standard Error Estimators 

in OLS Regression: An Introduction and Software. 

Hayes, A. F. (2009). Using Heteroskedasticity-Consistent Standard Error Estimators 

in OLS Regression: An Introduction and Software. 

Hoyt, W. L. (2006). Analysis and Interpretation of Findings Using Multiple 

Regression Techniques. Rehabilitation Counseling Bulletin, pp. 223-233. 

Jaccard, J. G.-R. (2006). Multiple Regression Analyses in Clinical Child and 

Adolescent Psychology. Journal of Counseling Bulletin, 456-479. 

Keith, T. (2006). Multiple Regression and Beyond. PEARSON Allyn & Bacon. 

Mario Francuso, J. M. (2007). Two tests for Heteroscedasticity in Nonparametric 

Regressiom. 

Mason, C. &. (1991). Collinearity, Power and Interpretation of Multiple Regression 

Analysis. Journal of Marketing Research, 268-280. 

Neale, M. H. (1994). Multiple Regression with Data Colleect from Relatves: Testing 

Assumptions of the Model. Multivarite Behavioral Research. 

Oyeyemi, G. B. (n.d.). University of Ilorin, Department of Statistics, Ilorin. 

P.Marshall, T. S. (1995). Testing the distributional assumptions of least squares 

linear regression. University of British Columbia 2357 Main Mall, Forest 

Resources Management. 



Pasha, M. A. (2000). Adaptive Estimation of Heteroscedastic Linear Regression 

Models Using Heteroscedasticity Consistent Covariance Matrix . 

Pinkse, J. (2006). Heteroskedasticity Correlation and Dimension Reduction. 

Poole, M. &. (1971). The Assumption of the Linear Regression Model. Transactions 

of the Institute of British Geographers, 145-158. 

Saez, G. C. (2000). Collinearity, Heteroscedasticity and Outlier Diagnostics in 

Regression. Do They Always Offer What They Claim? University of Giroma, 

Department of Economics, Girona. 

Schreiber-Gregory, D. (2018). Logistic and Linear Regression Assumptions: 

Violation Recognition and control. Henry M Jackson Foundation. 

Sevier, F. (1957). Testing Assumptions underlying Multiple Regression. The Journal 

of Experimental Education, 323-330. 

Shieh, G. (2010). On the Misconception of Multicollinearity in detecting of 

Moderating Effects: Multicollinearity is not Always Detrimental. Multivariate 

Behavioral Research. 

Terasvirta, T. (2011). Nonlinear Models for Autoregressive Conditional 

Hetroscedasticity. 

Webster, A. L. (1995). Applied Statistics for Business and Economics (Second Edition 

ed.). 

Zheng, X. (2009). Testing Heteroscedasticity in Nonlinear and Nonparametric 

Regression. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

APPENDICES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



APPENDIX A 

Appendix (A1) 

Year Production Pesticides 
Quality 

Seeds 
Weir 

1998 303.4 1452 19732 10 

1999 297.9 440 19863 9 

2000 343.6 111 19650 7 

2001 358.9 521 60641 18 

2002 524 1467 6974 17 

2003 593.4 3872 4273 23 

2004 692.9 1293 9167 28 

2005 771.1 555 10968 27 

2006 903.5 607 10282 30 

2007 1015.8 744 1668 25 

2008 1128.1 3607 1687 32 

2009 1184.7 3651 1390 32 

2010 1225.7 3685 1485 33 

2011 1354.4 25774 3220 35 

2012 1461.5 26484 3910 28 

2013 1502 86305 2115 29 

2014 1601 4838 1192 31 

2015 1693 18314 2323 30 

2016 1748 175803 2890 31 

2017 1831 379918 1350 31 

2018 1909 910543 1995 33 

Source: Statistical Year Book (CSO), Agricultural Statistics 

 

 

 

 

 

 

 

 

 

 

 



Appendix (A2) 

Year Production Pesticides 

Substitution 

Sown 

1998 90.7 242 4863 

1999 92 26 1568 

2000 115.3 22 5408 

2001 92.1 318 6206 

2002 94.4 222 5035 

2003 105.7 111 6865 

2004 122.4 135 8522 

2005 150 222 9181 

2006 156.2 78 6836 

2007 140.2 44 5533 

2008 155.3 361 3762 

2009 170.4 363 7787 

2010 179.2 366 8372 

2011 181 369 8301 

2012 169.8 344 5701 

2013 177.6 863 7741 

2014 182.9 366 9117 

2015 182.4 221 12616 

2016 179 159 13814 

2017 166 364 665 

2018 123 894 11331 

Source: Statistical Year Book (CSO), Agricultural Statistics 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix (A3) 

Year Production Sown Yield Year Production Sown Yield 

1966 8055.5 12,390 32.22 2002 21,914 15,940 66 

1967 6636.76 12,328 28.5 2003 21,804 16,032 66 

1968 7769.66 12,193 32.02 2004 23,135 16,168 68 

1969 8022.12 12,402 32.67 2005 24,751 16,946 70 

1970 7984.56 12,243 33.15 2006 27,682 18,259 71 

1971 8161.9 12,294 32.92 2007 30,922 20,076 73 

1972 8174.42 12,299 33.28 2008 30954 19,989 76.14 

1973 7356.56 12,014 31.51 2009 32,058 20,001 78.21 

1974 8602.13 12,575 34.19 2010 32164 19933 78.91 

1975 8583.35 12,793 34.09 2011 32064 19885 78.6 

1976 9207.18 12,858 35.91 2012 28221 18762 74.36 

1977 9317.76 12,547 36.8 2013 26952 17893 74.55 

1978 9461.72 12,690 37.73 2014 27545 17999 75.63 

1979 10527.9 12,957 40.75 2015 26423 17722 76.45 

1980 10446.5 12,420 45.62 2016 26210 17821 77.08 

1981 13317.3 12,668 53.8 2017 25673 17695 75 

1982 14145.6 12,610 57.06 2018 25624 17930 75 

1983 14,146 12,064 61.1     

1984 14,372 11,938 59.84     

1985 14,253 12,151 60.09     

1986 14,464 12,076 60.09     

1987 14,126 12,193 58.72     

1988 11,548 11,530 59.8     

1989 13,164 11,807 56     

1990 13,803 12,057 57     

1991 13,968 12,220 57     

1992 13,201 11,935 56     

1993 14,837 12,684 57     

1994 16,759 14,021 59     

1995 18,194 14,643 61     

1996 17,952 15,166 58     

1997 17,675 14,518 59     

1998 16,654 14,294 59     

1999 17,077 14,230 61     

2000 20,125 15,528 63     

2001 21,323 15,713 66     

Source: Statistical Year Book (CSO), Agricultural Statistics 

 

 



Appendix (A4) 

Year Production Sown Harvested Irrigation Loan 
Quality 

Seeds 
Pesticides 

1989 142.7 2994 1592 198.72 65.13 2153 326 

1990 203.5 3158 2285 196.05 59.72 555 1901 

1991 212.4 3271 2454 174.64 60.54 1694 1460 

1992 167.9 3184 1984 186.69 61.52 1849 680 

1993 233.4 3379 2451 184.98 98.76 2407 889 

1994 219.8 3212 2338 145.56 93.04 2638 865 

1995 299.3 3288 2797 175.97 96.27 1256 1978 

1996 298.8 3153 2234 264.32 850.89 5091 3682 

1997 340.3 2830 2746 160.75 851.11 4464 2933 

1998 258.7 2557 1789 147.76 315.55 1858 2734 

1999 260 2963 1521 285.57 437.71 228 2332 

2000 253.2 3352 2381 293.94 523.18 750 158 

2001 375.8 3517 3064 232.19 524.83 660 240 

2002 339 3416 2865 236.94 590.64 68 3111 

2003 405.9 3501 3130 184.98 569.72 306 3386 

2004 436.2 3619 3281 208.18 963.22 230 577 

2005 473.9 3696 3306 246.46 1241.14 209 333 

2006 438.5 3306 2934 188.24 1562.13 154 289 

2007 680 3565 3378 186.08 1945.74 769 111 

2008 768 3725 3536 194.04 3360.32 398 7581 

2009 840 3880 3685 176.83 3581.21 252 7627 

2010 854 4038 3863 184.48 5665.1 899 7678 

2011 787.4 3918 3754 178.61 10059.67 484 29796 

2012 832.1 3941 3785 160.78 11400.85 2150 35324 

2013 794.6 3838 3688 156.73 11906.29 443 86324 

2014 817.1 4007 3767 209.92 24962.32 825 18654 

2015 801.6 3906 3600 281.61 25205.4 893 86218 

2016 828 4052 3732 285.66 22639.9 1186 243707 

2017 813 4042 3694 335.49 23320.86 1644 447822 

2018 764 3685 3652 260.57 58018.6 2000 928447 

Source: Statistical Year Book (CSO), Agricultural Statistics 

 

 

 

 

 

 

 



APPENDIX B 

Appendix (B1) 

Descriptive Statistics 

 Mean Std. Deviation N 

Production 804.7400 24.65579 5 

Sown 3938.4000 152.97483 5 

Harvested 3689.0000 65.66582 5 

Irrigation 274.6500 45.44058 5 

Loan 30829.4160 15237.70557 5 

QualitySeed 1309.6000 503.02714 5 

Pesticides 344969.6000 365620.31808 5 

 
Appendix (B2) 

ANOVA
a
 

Model Sum of 

Squares 

df Mean Square F Sig. 

1 

Regression 2431.632 4 607.908 . .
b
 

Residual .000 0 .   

Total 2431.632 4    

a. Dependent Variable: Production 

b. Predictors: (Constant), Pesticides, Irrigation, Harvested, QualitySeed 

 

Appendix (B3) 

Coefficients
a
 

Model Unstandardized Coefficients Standardized 

Coefficients 

t Sig. 

B Std. Error Beta 

1 

(Constant) -378.043 .000  . . 

Harvested .310 .000 .825 . . 

Irrigation .524 .000 .965 . . 

QualitySeed -.100 .000 -2.042 . . 

Pesticides 8.088E-005 .000 1.199 . . 

a. Dependent Variable: Production 

 

 

 

 



Appendix (B4) 

Excluded Variables
a
 

Model Beta In t Sig. Partial 

Correlation 

Collinearity 

Statistics 

Tolerance 

1 
Sown .

b
 . . . .000 

Loan .
b
 . . . .000 

a. Dependent Variable: Production 

b. Predictors in the Model: (Constant), Pesticides, Irrigation, Harvested, QualitySeed 

 
Appendix (B5) 

Descriptive Statistics 

 Mean Std. Deviation N 

Production 803.0500 22.43798 6 

Sown 3921.6667 142.83230 6 

Harvested 3688.8333 58.73471 6 

Irrigation 254.9967 63.00316 6 

Loan 27675.5617 15666.23502 6 

QualitySeed 1165.1667 572.35912 6 

Pesticides 301862.0000 343645.40541 6 

 

Appendix (B6) 

Model Summary 

Model R R Square Adjusted R 

Square 

Std. Error of 

the Estimate 

1 1.000
a
 1.000 . . 

a. Predictors: (Constant), Pesticides, Harvested, Irrigation, Loan, 

QualitySeed 

 

Appendix (B7) 

ANOVA
a
 

Model Sum of 

Squares 

df Mean Square F Sig. 

1 

Regression 2517.315 5 503.463 . .
b
 

Residual .000 0 .   

Total 2517.315 5    

a. Dependent Variable: Production 

b. Predictors: (Constant), Pesticides, Harvested, Irrigation, Loan, QualitySeed 

 



Appendix (B8) 

Coefficients
a
 

Model Unstandardized Coefficients Standardized 

Coefficients 

t Sig. 

B Std. Error Beta 

1 

(Constant) -500.086 .000  . . 

Harvested .335 .000 .876 . . 

Irrigation .597 .000 1.676 . . 

Loan .000 .000 .308 . . 

QualitySeed -.098 .000 -2.493 . . 

Pesticides 6.086E-005 .000 .932 . . 

a. Dependent Variable: Production 

 

Appendix (B9) 

Coefficients
a
 

Model Unstandardized Coefficients Standardized 

Coefficients 

t Sig. 

B Std. Error Beta 

1 

(Constant) -500.086 .000  . . 

Harvested .335 .000 .876 . . 

Irrigation .597 .000 1.676 . . 

Loan .000 .000 .308 . . 

QualitySeed -.098 .000 -2.493 . . 

Pesticides 6.086E-005 .000 .932 . . 

a. Dependent Variable: Production 

 

Appendix (B10) 

Excluded Variables
a
 

Model Beta In t Sig. Partial 

Correlation 

Collinearity 

Statistics 

Tolerance 

1 Sown .
b
 . . . .000 

a. Dependent Variable: Production 

b. Predictors in the Model: (Constant), Pesticides, Harvested, Irrigation, Loan, 

QualitySeed 

 

 



Appendix (B11) 

Descriptive Statistics 

 Mean Std. Deviation N 

Production 1068.7095 542.16870 21 

Pesticide 78570.6667 210229.42327 21 

Weir 25.6667 8.46955 21 

QualitySeed 8894.0476 13461.00095 21 

 

Appendix (B12) 

Descriptive Statistics 

 Mean Std. Deviation N 

Production 144.0762 34.65546 21 

Pesticides 290.0000 230.97662 21 

SubstitutionSown 7105.9048 3227.93624 21 

 

Appendix (B13) 

Descriptive Statistics 

 Mean Std. Deviation N 

Production 17311.4701 7899.67923 53 

Sown 14567.9245 2780.28885 53 

Yield 56.8828 15.77927 53 

 

Appendix (B14) 

Descriptive Statistics 

 Mean Std. Deviation N 

Production 497.9700 262.04522 30 

Sown 3499.7667 396.57740 30 

Harvested 2976.2000 723.63076 30 

Irrigation 210.7580 49.71418 30 

Loan 7034.3787 12645.54763 30 

QualitySeed 1283.7667 1216.95858 30 

Pesticides 64238.7667 187153.36100 30 

 

 

 

 

 



Appendix (B15) 

Descriptives 

 Statistic Std. Error 

Standardized 

Residual 

Mean 0E-7 .20701967 

95% Confidence Interval 

for Mean 

Lower Bound -.4318355  

Upper Bound .4318355  

5% Trimmed Mean .0205583  

Median .3752123  

Variance .900  

Std. Deviation .94868330  

Minimum -1.76818  

Maximum 1.40998  

Range 3.17816  

Interquartile Range 1.61812  

Skewness -.521 .501 

Kurtosis -1.075 .972 

 

Appendix (B16) 

Descriptives 

 Statistic Std. Error 

Standardized 

Residual 

Mean 0E-7 .20701967 

95% Confidence 

Interval for Mean 

Lower Bound -.4318355  

Upper Bound .4318355  

5% Trimmed Mean -.0129864  

Median .0441381  

Variance .900  

Std. Deviation .94868330  

Minimum -1.40694  

Maximum 1.65417  

Range 3.06111  

Interquartile Range 1.75090  

Skewness .091 .501 

Kurtosis -1.384 .972 

 

 


